线性回归用于识别因变量和一个或多个独立变量之间的关系。 提出了关系的模型,并且使用参数值的估计来形成估计的回归方程。
公司主营业务:做网站、成都网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联建站是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联建站推出华龙免费做网站回馈大家。
然后使用各种测试来确定模型是否令人满意。 如果是,则可以使用估计的回归方程来预测自变量的因变量给定值的值。 在SAS中,程序PROC REG用于找到两个变量之间的线性回归模型。
在SAS中应用PROC REG的基本语法是:
PROC REG DATA = dataset; MODEL variable_1 = variable_2;
以下是使用的参数的描述:
下面的例子显示了使用PROC REG查找汽车的两个变量马力和重量之间的相关性的过程。 在结果中,我们看到可以用于形成回归方程的截距值。
PROC SQL; create table CARS1 as SELECT invoice,horsepower,length,weight FROM SASHELP.CARS WHERE make in ('Audi','BMW') ; RUN; proc reg data=cars1; model horsepower= weight ; run;
当执行上面的代码中,我们得到以下结果:
上面的代码还给出了模型的各种估计的图形视图,如下所示。 作为一个高级SAS程序,它不会停止给予截距值作为输出。
分享标题:创新互联SAS教程:SAS线性回归
当前路径:http://www.csdahua.cn/qtweb/news20/159570.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网