概念
1、Box-Cox变换是统计建模中常用的建模方法,主要用于连续响应变量不满足正态分布。
可采用Box-Cox变换。
2、使线性回归模型在满足线性、正态性、独立性和方差的同时不丢失信息。
在Box-Cox转换之前,有必要将数据归一化。
实例
#我们这里是对训练集和测试集一起归一化,也可以分开进行归一化,(分开)这种方式需要建立训练数据和测试数据分布一直的情况下,建议在数据量大的情况下使用。 # 绘图显示Box-Cox变换对数据分布影响 cols_numeric_left = cols_numeric[0:13] cols_numeric_right = cols_numeric[13:] #这里是将特征分为两部分,前13个为第一部分 ## Check effect of Box-Cox transforms on distributions of continuous variables train_data_process = pd.concat([train_data_process, train_data['target']], axis=1) fcols = 6 frows = len(cols_numeric_left) plt.figure(figsize=(4*fcols,4*frows)) i=0 for var in cols_numeric_left: dat = train_data_process[[var, 'target']].dropna() i+=1 plt.subplot(frows,fcols,i) sns.distplot(dat[var] , fit=stats.norm); plt.title(var+' Original') plt.xlabel('') i+=1 plt.subplot(frows,fcols,i) _=stats.probplot(dat[var], plot=plt) plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var]))) #计算数据集的偏度 plt.xlabel('') plt.ylabel('') i+=1 plt.subplot(frows,fcols,i) plt.plot(dat[var],dat['target'],'.',alpha=0.5) plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var],dat['target'])[0][1])) i+=1 plt.subplot(frows,fcols,i) trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1) trans_var = scale_data(trans_var) sns.distplot(trans_var , fit=stats.norm); plt.title(var+' Tramsformed') plt.xlabel('') i+=1 plt.subplot(frows,fcols,i) _=stats.probplot(trans_var, plot=plt) plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var))) #归一化后,偏度明显变小,相关性变化不大 plt.xlabel('') plt.ylabel('') i+=1 plt.subplot(frows,fcols,i) plt.plot(trans_var, dat['target'],'.',alpha=0.5) plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))
以上就是python中Box-Cox变换的介绍,希望对大家有所帮助。更多Python学习指路:创新互联python教程
本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。
网站名称:创新互联Python教程:python中Box-Cox变换是什么
浏览路径:http://www.csdahua.cn/qtweb/news26/423126.html
网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网