教你用Python创建瀑布图

介绍

10年专注成都网站制作,企业网站制作,个人网站制作服务,为大家分享网站制作知识、方案,网站设计流程、步骤,成功服务上千家企业。为您提供网站建设,网站制作,网页设计及定制高端网站建设服务,专注于企业网站制作,高端网页制作,对楼梯护栏等多个行业,拥有丰富的网站制作经验。

对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具。不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图。

在往下进行之前,我想先告诉大家我指代的是哪种类型的图表。我将建立一个维基百科文章中描述的2D瀑布图。

这种图表的一个典型的用处是显示开始值和结束值之间起“桥梁”作用的+和-的值。因为这个原因,财务人员有时会将其称为一个桥梁。跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住。

关于瀑布图需要记住的关键点是:它本质上是一个堆叠在一起的条形图,不过特殊的一点是,它有一个空白底栏,所以顶部栏会“悬浮”在空中。那么,让我们开始吧。

创建图表

首先,执行标准的输入,并确保IPython能显示matplot图。

 
 
  1. import numpy as np 
  2. import pandas as pd 
  3. import matplotlib.pyplot as plt 
 
 
  1. %matplotlib inline 

设置我们想画出瀑布图的数据,并将其加载到数据帧(DataFrame)中。

数据需要以你的起始值开始,但是你需要给出最终的总数。我们将在下面计算它。

 
 
  1. index = ['sales','returns','credit fees','rebates','late charges','shipping'] 
  2. data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]} 
  3. trans = pd.DataFrame(data=data,index=index) 

 我使用了IPython中便捷的display函数来更简单地控制我要显示的内容。

 
 
  1. from IPython.display import display 
  2. display(trans)

瀑布图的***技巧是计算出底部堆叠条形图的内容。有关这一点,我从stackoverflow上的讨论中学到很多。

首先,我们得到累积和。

 
 
  1. display(trans.amount.cumsum()) 
  2.  
  3. sales 350000 
  4.  
  5. returns 320000 
  6.  
  7. credit fees 312500 
  8.  
  9. rebates 287500 
  10.  
  11. late charges 382500 
  12.  
  13. shipping 375500 
  14.  
  15. Name: amount, dtype: int64 

 这看起来不错,但我们需要将一个地方的数据转移到右边。

 
 
  1. blank=trans.amount.cumsum().shift(1).fillna(0) 
  2.  
  3. display(blank)
 
 
  1. sales 0 
  2.  
  3. returns 350000 
  4.  
  5. credit fees 320000 
  6.  
  7. rebates 312500 
  8.  
  9. late charges 287500 
  10.  
  11. shipping 382500 
  12.  
  13. Name: amount, dtype: float64 

 我们需要向trans和blank数据帧中添加一个净总量。

 
 
  1. total = trans.sum().amount 
  2.  
  3. trans.loc["net"] = total 
  4.  
  5. blank.loc["net"] = total 
  6.  
  7. display(trans) 
  8.  
  9. display(blank) 

 

 
 
  1. sales 0 
  2.  
  3. returns 350000 
  4.  
  5. credit fees 320000 
  6.  
  7. rebates 312500 
  8.  
  9. late charges 287500 
  10.  
  11. shipping 382500 
  12.  
  13. net 375500 
  14.  
  15. Name: amount, dtype: float64 

 创建我们用来显示变化的步骤。

 
 
  1. step = blank.reset_index(drop=True).repeat(3).shift(-1) 
  2.  
  3. step[1::3] = np.nan 
  4.  
  5. display(step)
 
 
  1. 0 0 
  2.  
  3. 0 NaN 
  4.  
  5. 0 350000 
  6.  
  7. 1 350000 
  8.  
  9. 1 NaN 
  10.  
  11. 1 320000 
  12.  
  13. 2 320000 
  14.  
  15. 2 NaN 
  16.  
  17. 2 312500 
  18.  
  19. 3 312500 
  20.  
  21. 3 NaN 
  22.  
  23. 3 287500 
  24.  
  25. 4 287500 
  26.  
  27. 4 NaN 
  28.  
  29. 4 382500 
  30.  
  31. 5 382500 
  32.  
  33. 5 NaN 
  34.  
  35. 5 375500 
  36.  
  37. 6 375500 
  38.  
  39. 6 NaN 
  40.  
  41. 6 NaN 
  42.  
  43. Name: amount, dtype: float64 

 对于“net”行,为了不使堆叠加倍,我们需要确保blank值为0。 

 
 
  1. blank.loc["net"] = 0 

然后,将其画图,看一下什么样子。

 
 
  1. my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall") 
  2. my_plot.plot(step.index, step.values,'k')

看起来相当不错,但是让我们试着格式化Y轴,以使其更具有可读性。为此,我们使用FuncFormatter和一些Python2.7+的语法来截断小数并向格式中添加一个逗号。

 
 
  1. def money(x, pos): 
  2.  
  3. 'The two args are the value and tick position' 
  4.  
  5. return "${:,.0f}".format(x)
 
 
  1. from matplotlib.ticker import FuncFormatter 
  2. formatter = FuncFormatter(money) 

 然后,将其组合在一起。 

 
 
  1. my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, title="2014 Sales Waterfall") 
  2.  
  3. my_plot.plot(step.index, step.values,'k') 
  4.  
  5. my_plot.set_xlabel("Transaction Types") 
  6.  
  7. my_plot.yaxis.set_major_formatter(formatter)

#p#

完整脚本

基本图形能够正常工作,但是我想添加一些标签,并做一些小的格式修改。下面是我最终的脚本:

 
 
  1. import numpy as np 
  2.  
  3. import pandas as pd 
  4.  
  5. import matplotlib.pyplot as plt 
  6.  
  7. from matplotlib.ticker import FuncFormatter 
  8.  
  9.   
  10.  
  11. #Use python 2.7+ syntax to format currency 
  12.  
  13. def money(x, pos): 
  14.  
  15. 'The two args are the value and tick position' 
  16.  
  17. return "${:,.0f}".format(x) 
  18.  
  19. formatter = FuncFormatter(money) 
  20.  
  21.   
  22.  
  23. #Data to plot. Do not include a total, it will be calculated 
  24.  
  25. index = ['sales','returns','credit fees','rebates','late charges','shipping'] 
  26.  
  27. data = {'amount': [350000,-30000,-7500,-25000,95000,-7000]} 
  28.  
  29.   
  30.  
  31. #Store data and create a blank series to use for the waterfall 
  32.  
  33. trans = pd.DataFrame(data=data,index=index) 
  34.  
  35. blank = trans.amount.cumsum().shift(1).fillna(0) 
  36.  
  37.   
  38.  
  39. #Get the net total number for the final element in the waterfall 
  40.  
  41. total = trans.sum().amount 
  42.  
  43. trans.loc["net"]= total 
  44.  
  45. blank.loc["net"] = total 
  46.  
  47.   
  48.  
  49. #The steps graphically show the levels as well as used for label placement 
  50.  
  51. step = blank.reset_index(drop=True).repeat(3).shift(-1) 
  52.  
  53. step[1::3] = np.nan 
  54.  
  55.   
  56.  
  57. #When plotting the last element, we want to show the full bar, 
  58.  
  59. #Set the blank to 0 
  60.  
  61. blank.loc["net"] = 0 
  62.  
  63.   
  64.  
  65. #Plot and label 
  66.  
  67. my_plot = trans.plot(kind='bar', stacked=True, bottom=blank,legend=None, figsize=(10, 5), title="2014 Sales Waterfall") 
  68.  
  69. my_plot.plot(step.index, step.values,'k') 
  70.  
  71. my_plot.set_xlabel("Transaction Types") 
  72.  
  73.   
  74.  
  75. #Format the axis for dollars 
  76.  
  77. my_plot.yaxis.set_major_formatter(formatter) 
  78.  
  79.   
  80.  
  81. #Get the y-axis position for the labels 
  82.  
  83. y_height = trans.amount.cumsum().shift(1).fillna(0) 
  84.  
  85.   
  86.  
  87. #Get an offset so labels don't sit right on top of the bar 
  88.  
  89. max = trans.max() 
  90.  
  91. neg_offset = max / 25 
  92.  
  93. pos_offset = max / 50 
  94.  
  95. plot_offset = int(max / 15) 
  96.  
  97.   
  98.  
  99. #Start label loop 
  100.  
  101. loop = 0 
  102.  
  103. for index, row in trans.iterrows(): 
  104.  
  105. # For the last item in the list, we don't want to double count 
  106.  
  107. if row['amount'] == total: 
  108.  
  109. y = y_height[loop] 
  110.  
  111. else: 
  112.  
  113. y = y_height[loop] + row['amount'] 
  114.  
  115. # Determine if we want a neg or pos offset 
  116. if row['amount'] > 0: 
  117.  
  118. y += pos_offset 
  119.  
  120. else: 
  121.  
  122. y -= neg_offset 
  123.  
  124. my_plot.annotate("{:,.0f}".format(row['amount']),(loop,y),ha="center") 
  125.  
  126. loop+=1 
  127.  
  128.   
  129.  
  130. #Scale up the y axis so there is room for the labels 
  131.  
  132. my_plot.set_ylim(0,blank.max()+int(plot_offset)) 
  133.  
  134. #Rotate the labels 
  135.  
  136. my_plot.set_xticklabels(trans.index,rotation=0) 
  137.  
  138. my_plot.get_figure().savefig("waterfall.png",dpi=200,bbox_inches='tight') 

 运行该脚本将生成下面这个漂亮的图表:

***的想法

如果你之前不熟悉瀑布图,希望这个示例能够向你展示它到底是多么有用。我想,可能一些人会觉得对于一个图表来说需要这么多的脚本代码有点糟糕。在某些方面,我同意这种想法。如果你仅仅只是做一个瀑布图,而以后不会再碰它,那么你还是继续用Excel中的方法吧。

然而,如果瀑布图真的很有用,并且你需要将它复制给100个客户,将会怎么样呢?接下来你将要怎么做呢?此时使用 Excel将会是一个挑战,而使用本文中的脚本来创建100个不同的表格将相当容易。再次说明,这一程序的真正价值在于,当你需要扩展这个解决方案时,它 能够便于你创建一个易于复制的程序。

我真的很喜欢学习更多Pandas、matplotlib和IPothon的知识。我很高兴这种方法能够帮到你,并希望其他人也可以从中学习到一些知识,并将这一课所学应用到他们的日常工作中。

 

分享题目:教你用Python创建瀑布图
本文来源:http://www.csdahua.cn/qtweb/news49/94749.html

网站建设、网络推广公司-快上网,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 快上网