扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要为大家展示了“Python中浮点数的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python中浮点数的示例分析”这篇文章吧。
建阳ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!提到的部分问题,读者们可以先思考下:
若两个元组相等,即 a==b 且 a is b,那么相同索引的元素(如 a[0] 、b[0])是否必然相等呢?
若两个对象的 hash 结果相等,即 hash(a) == hash(b),那么它们是否必然相等呢?
答案当然都为否(不然就不叫冷知识了),大家可以先尝试回答一下,然后再往下看。
-----思考分割线-----
好了,先来看看第一个问题。两个相同的元组 a、b,它们有如下的关系:
>>> a = (float('nan'),) >>> b = a >>> a # (nan,) >>> b # (nan,) >>> type(a), type(b) (, ) >>> a == b True >>> a is b # 即 id(a) == id(b) True >>> a[0] == b[0] False
以上代码表明:a 等于 b(类型、值与 id 都相等),但是它们的对位元素却不相等。
两个元组都只有一个元素(逗号后面没有别的元素,这是单元素的元组的表示方法,即 len(a)==1 )。float() 是个内置函数,可以将入参构造成一个浮点数。
为什么会这样呢?先查阅一下文档,这个内置函数的解析规则是:
sign ::= "+" | "-" infinity ::= "Infinity" | "inf" nan ::= "nan" numeric_value ::= floatnumber | infinity | nan numeric_string ::= [sign] numeric_value
它在解析时,可以解析前后的空格、前缀的加减号(+/-)、浮点数,除此之外,还可以解析两类字符串(不区分大小写):"Infinity"或"inf",表示无穷大数;“nan”,表示不是数(not-a-number),确切地说,指的是除了数以外的所有东西。
前面分享的第一个冷知识就跟“nan”有关,作为整体,两个元组相等,但是它们唯一的元素却不相等。之所以会这样,因为“nan”表示除了数以外的东西,它是一个范围,所以不可比较。
作为对比,我们来看看两个“无穷大的浮点数”是什么结果:
>>> a = (float('inf'),) >>> b = a >>> a # (inf,) >>> b # (inf,) >>> a == b # True >>> a is b # True >>> a[0] == b[0] # True
注意最后一次比较,它跟前面的两个元组恰好相反,由此,我们可以得出结论:两个无穷大的浮点数,数值相等,而两个“不是数的东西”,数值不相等。
化简一下,可以这样看:
>>> a = float('inf') >>> b = float('inf') >>> c = float('nan') >>> d = float('nan') >>> a == b # True >>> c == d # False
以上就是第一个冷知识的揭秘。接着看第二个:
>>> hash(float('nan')) == hash(float('nan')) True
前面刚说了两个“不是数的东西”不相等,这里却显示它们的哈希结果相等,这挺违背常理的。
我们可以推理出一条简单的结论:不相等的两个对象,其哈希结果可能相等。
原因在于,hash(float('nan')) 的结果等于 0,它是个固定值,作比较时当然就相等了。
其实,关于 hash() 函数,还埋了一个彩蛋:
>>> hash(float('inf')) # 314159 >>> hash(float('-inf')) # -314159
有没有觉得这个数值很熟悉啊?它正是圆周率的前五位 3.14159,去除小数点后的结果。在早期的 Python 版本中,负无穷大数的哈希结果其实是 -271828,正是取自于自然对数 e。这两个数都是硬编码在 Python 解释器中的,算是某种致敬吧。
由于 float('nan') 的哈希值相等,这通常意味着它们不可以作为字典的不同键值,但是事实却出人意料:
>>> a = {float('nan'): 1, float('nan'): 2} >>> a {nan: 1, nan: 2} # 作为对比: >>> b = {float('inf'): 1, float('inf'): 2} >>> b {inf: 2}
如上所示,两个 nan 键值在表示上一模一样(注意,它们没有用引号括起来),它们可以共存,而 inf 却只能归并成一个,再次展示出了 nan 的神奇。
好了,两个很冷的小知识分享完毕,背后的原因都在于 float() 取浮点数时,Python 允许了 nan(不是数)的存在,它表示不确切的存在,所以导致了这些奇怪的结果。
最后,我们作下小结:
包含 float('nan') 的两个元组,当做整体作比较时,结果相等;两个相等的元组,其对位的元素可能不相等
float('nan') 表示一个“不是数”的东西,它本身不是确定值,两个对象作比较时不相等,但是其哈希结果是固定值,作比较时相等;可用作字典的键值,而且是不冲突的键值
float('inf') 表示一个无穷大的浮点数,可看作确定的值,两个对象做比较时相等,其哈希结果也相等;可用作字典的键值,但是会产生冲突
float('nan') 的哈希结果为 0,float('inf') 的哈希结果为 314159
以上是“Python中浮点数的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
Copyright © 2002-2023 www.csdahua.cn 快上网建站品牌 QQ:244261566 版权所有 备案号:蜀ICP备19037934号
微信二维码
移动版官网