Pandas删除数据的几种情况(小结)-创新互联

开始之前,pandas中DataFrame删除对象可能存在几种情况

成都创新互联公司是专业的漾濞网站建设公司,漾濞接单;提供做网站、网站设计,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行漾濞网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

1、删除具体列
2、删除具体行
3、删除包含某些数值的行或者列
4、删除包含某些字符、文字的行或者列


本文就针对这四种情况探讨一下如何操作。

数据准备

模拟了一份股票交割的记录。


In [1]: import pandas as pd

In [2]: data = {
  ...:   '证券名称' : ['格力电器','视觉中国','成都银行','中国联通','格力电器','视觉中国','成都银行','中国联通'],
  ...:   '摘要': ['证券买入','证券买入','证券买入','证券买入','证券卖出','证券卖出','证券卖出','证券卖出'],
  ...:   '成交数量' : [500,1000,1500,2000,500,500,1000,1500],
  ...:   '成交金额' : [-5000,-10000,-15000,-20000,5500,5500,11000,15000]
  ...: }
  ...: 

In [3]: df = pd.DataFrame(data, index = ['2018-2-1','2018-2-1','2018-2-1','2018-2-1','2018-2-2','2018-2-2','2018-2-2','2018-2-3'])

In [4]: df
Out[4]: 
     成交数量  成交金额  摘要 证券名称
2018-2-1  500 -5000 证券买入 格力电器
2018-2-1 1000 -10000 证券买入 视觉中国
2018-2-1 1500 -15000 证券买入 成都银行
2018-2-1 2000 -20000 证券买入 中国联通
2018-2-2  500  5500 证券卖出 格力电器
2018-2-2  500  5500 证券卖出 视觉中国
2018-2-2 1000 11000 证券卖出 成都银行
2018-2-3 1500 15000 证券卖出 中国联通


标题名称:Pandas删除数据的几种情况(小结)-创新互联
本文链接:http://csdahua.cn/article/cdpepj.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流