扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
max pooling是CNN当中的大值池化操作,其实用法和卷积很类似
创新互联建站主营饶平网站建设的网络公司,主营网站建设方案,app软件定制开发,饶平h5微信小程序定制开发搭建,饶平网站营销推广欢迎饶平等地区企业咨询有些地方可以从卷积去参考【TensorFlow】 tf.nn.conv2d实现卷积的方式
tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:
第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'
返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式
示例源码:
假设有这样一张图,双通道
第一个通道:
第二个通道:
用程序去做大值池化:
import tensorflow as tf a=tf.constant([ [[1.0,2.0,3.0,4.0], [5.0,6.0,7.0,8.0], [8.0,7.0,6.0,5.0], [4.0,3.0,2.0,1.0]], [[4.0,3.0,2.0,1.0], [8.0,7.0,6.0,5.0], [1.0,2.0,3.0,4.0], [5.0,6.0,7.0,8.0]] ]) a=tf.reshape(a,[1,4,4,2]) pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID') with tf.Session() as sess: print("image:") image=sess.run(a) print (image) print("reslut:") result=sess.run(pooling) print (result)
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流