Hadoop2.7如何配置部署及测试-创新互联

小编给大家分享一下Hadoop2.7如何配置部署及测试,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

为天山等地区用户提供了全套网页设计制作服务,及天山网站建设行业解决方案。主营业务为成都网站设计、网站制作、天山网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

1.环境准备:

安装Centos6.5的操作系统

下载hadoop2.7版本的软件

wget http://124.205.69.132/files/224400000162626A/mirrors.hust.edu.cn/apache/hadoop/common/stable/hadoop-2.7.1.tar.gz

下载jdk1.87版本的软件

wget http://download.oracle.com/otn-pub/java/jdk/8u60-b27/jdk-8u60-linux-x64.tar.gz?AuthParam=1443446776_174368b9ab1a6a92468aba5cd4d092d0

2.修改/etc/hosts文件及配置互信:

在/etc/hosts文件中增加如下内容:

192.168.1.61 host61

192.168.1.62 host62

192.168.1.63 host63

配置好各服务器之间的ssh互信

3.添加用户,解压文件并配置环境变量:

useradd hadoop

passwd hadoop

tar -zxvf hadoop-2.7.1.tar.gz

mv hadoop-2.7.1 /usr/local

ln -s hadoop-2.7.1 hadoop

chown -R hadoop:hadoop hadoop-2.7.1

tar -zxvf jdk-8u60-linux-x64.tar.gz

mv jdk1.8.0_60 /usr/local

ln -s jdk1.8.0_60 jdk

chown -R root:root jdk1.8.0_60

echo 'export JAVA_HOME=/usr/local/jdk' >>/etc/profile

echo 'export PATH=/usr/local/jdk/bin:$PATH' >/etc/profile.d/java.sh

4.修改hadoop配置文件:

1)修改hadoop-env.sh文件:

cd /usr/local/hadoop/etc/hadoop/hadoop-env.sh

sed -i 's%#export JAVA_HOME=${JAVA_HOME}%export JAVA_HOME=/usr/local/jdk%g' hadoop-env.sh

2)修改core-site.xml,在最后添加如下内容:

fs.default.name

hdfs://host61:9000/

hadoop.tmp.dir

/home/hadoop/temp

3)修改hdfs-site.xml文件:

dfs.replication

3

4)修改mapred-site.xml

mapred.job.tracker

host61:9001

5)配置masters

host61

6)配置slaves

host62

host63

5.用同样的方式配置host62及host63

6.格式化分布式文件系统

/usr/local/hadoop/bin/hadoop namenode format

7.替换hadoop的库文件:

mv /usr/local/hadoop/lib/native /usr/local/hadoop/lib/native_old

将编译好的hadoop文件下的lib/native文件夹复制过来;

8.运行hadoop

1)/usr/local/hadoop/sbin/start-dfs.sh

2)/usr/local/hadoop/sbin/start-yarn.sh

9.检查:

[root@host61 sbin]# jps

4532 ResourceManager

4197 NameNode

4793 Jps

4364 SecondaryNameNode

[root@host62 ~]# jps

32052 DataNode

32133 NodeManager

32265 Jps

[root@host63 local]# jps

6802 NodeManager

6963 Jps

6717 DataNode

10.通过web了解hadoop:

namenode的信息:

http://192.168.1.61:50070/

secondnamenode的信息:

http://192.168.1.61:50090/

datanode的信息:

http://192.168.1.62:50075/

11.测试

echo "this is the first file" >/tmp/mytest1.txt

echo "this is the second file" >/tmp/mytest2.txt

cd /usr/local/hadoop/bin;

[hadoop@host61 bin]$ ./hadoop fs -mkdir /in

[hadoop@host61 bin]$ ./hadoop fs -put /tmp/mytest*.txt /in

[hadoop@host61 bin]$ ./hadoop fs -ls /in

Found 2 items

-rw-r--r--  3 hadoop supergroup     23 2015-10-02 18:45 /in/mytest1.txt

-rw-r--r--  3 hadoop supergroup     24 2015-10-02 18:45 /in/mytest2.txt

[hadoop@host61 hadoop]$ ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar  wordcount /in /out

15/10/02 18:53:30 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id

15/10/02 18:53:30 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=

15/10/02 18:53:34 INFO input.FileInputFormat: Total input paths to process : 2

15/10/02 18:53:35 INFO mapreduce.JobSubmitter: number of splits:2

15/10/02 18:53:38 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1954603964_0001

15/10/02 18:53:40 INFO mapreduce.Job: The url to track the job: http://localhost:8080/

15/10/02 18:53:40 INFO mapreduce.Job: Running job: job_local1954603964_0001

15/10/02 18:53:40 INFO mapred.LocalJobRunner: OutputCommitter set in config null

15/10/02 18:53:40 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1

15/10/02 18:53:40 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter

15/10/02 18:53:41 INFO mapred.LocalJobRunner: Waiting for map tasks

15/10/02 18:53:41 INFO mapred.LocalJobRunner: Starting task: attempt_local1954603964_0001_m_000000_0

15/10/02 18:53:41 INFO mapreduce.Job: Job job_local1954603964_0001 running in uber mode : false

15/10/02 18:53:41 INFO mapreduce.Job:  map 0% reduce 0%

15/10/02 18:53:41 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1

15/10/02 18:53:41 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]

15/10/02 18:53:41 INFO mapred.MapTask: Processing split: hdfs://host61:9000/in/mytest2.txt:0+24

15/10/02 18:53:51 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)

15/10/02 18:53:51 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100

15/10/02 18:53:51 INFO mapred.MapTask: soft limit at 83886080

15/10/02 18:53:51 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600

15/10/02 18:53:51 INFO mapred.MapTask: kvstart = 26214396; length = 6553600

15/10/02 18:53:51 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer

15/10/02 18:53:52 INFO mapred.LocalJobRunner:

15/10/02 18:53:52 INFO mapred.MapTask: Starting flush of map output

15/10/02 18:53:52 INFO mapred.MapTask: Spilling map output

15/10/02 18:53:52 INFO mapred.MapTask: bufstart = 0; bufend = 44; bufvoid = 104857600

15/10/02 18:53:52 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600

15/10/02 18:53:52 INFO mapred.MapTask: Finished spill 0

15/10/02 18:53:52 INFO mapred.Task: Task:attempt_local1954603964_0001_m_000000_0 is done. And is in the process of committing

15/10/02 18:53:53 INFO mapred.LocalJobRunner: map

15/10/02 18:53:53 INFO mapred.Task: Task 'attempt_local1954603964_0001_m_000000_0' done.

15/10/02 18:53:53 INFO mapred.LocalJobRunner: Finishing task: attempt_local1954603964_0001_m_000000_0

15/10/02 18:53:53 INFO mapred.LocalJobRunner: Starting task: attempt_local1954603964_0001_m_000001_0

15/10/02 18:53:53 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1

15/10/02 18:53:53 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]

15/10/02 18:53:53 INFO mapred.MapTask: Processing split: hdfs://host61:9000/in/mytest1.txt:0+23

15/10/02 18:53:53 INFO mapreduce.Job:  map 100% reduce 0%

15/10/02 18:53:53 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)

15/10/02 18:53:53 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100

15/10/02 18:53:53 INFO mapred.MapTask: soft limit at 83886080

15/10/02 18:53:53 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600

15/10/02 18:53:53 INFO mapred.MapTask: kvstart = 26214396; length = 6553600

15/10/02 18:53:53 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer

15/10/02 18:53:54 INFO mapred.LocalJobRunner:

15/10/02 18:53:54 INFO mapred.MapTask: Starting flush of map output

15/10/02 18:53:54 INFO mapred.MapTask: Spilling map output

15/10/02 18:53:54 INFO mapred.MapTask: bufstart = 0; bufend = 43; bufvoid = 104857600

15/10/02 18:53:54 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600

15/10/02 18:53:54 INFO mapred.MapTask: Finished spill 0

15/10/02 18:53:54 INFO mapred.Task: Task:attempt_local1954603964_0001_m_000001_0 is done. And is in the process of committing

15/10/02 18:53:54 INFO mapreduce.Job:  map 50% reduce 0%

15/10/02 18:53:54 INFO mapred.LocalJobRunner: map

15/10/02 18:53:54 INFO mapred.Task: Task 'attempt_local1954603964_0001_m_000001_0' done.

15/10/02 18:53:54 INFO mapred.LocalJobRunner: Finishing task: attempt_local1954603964_0001_m_000001_0

15/10/02 18:53:54 INFO mapred.LocalJobRunner: map task executor complete.

15/10/02 18:53:54 INFO mapred.LocalJobRunner: Waiting for reduce tasks

15/10/02 18:53:54 INFO mapred.LocalJobRunner: Starting task: attempt_local1954603964_0001_r_000000_0

15/10/02 18:53:54 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1

15/10/02 18:53:54 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]

15/10/02 18:53:54 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@5205a129

15/10/02 18:53:55 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=363285696, maxSingleShuffleLimit=90821424, mergeThreshold=239768576, ioSortFactor=10, memToMemMergeOutputsThreshold=10

15/10/02 18:53:55 INFO reduce.EventFetcher: attempt_local1954603964_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events

15/10/02 18:53:55 INFO mapreduce.Job:  map 100% reduce 0%

15/10/02 18:53:56 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1954603964_0001_m_000001_0 decomp: 55 len: 59 to MEMORY

15/10/02 18:53:56 INFO reduce.InMemoryMapOutput: Read 55 bytes from map-output for attempt_local1954603964_0001_m_000001_0

15/10/02 18:53:56 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 55, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->55

15/10/02 18:53:56 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1954603964_0001_m_000000_0 decomp: 56 len: 60 to MEMORY

15/10/02 18:53:56 INFO reduce.InMemoryMapOutput: Read 56 bytes from map-output for attempt_local1954603964_0001_m_000000_0

15/10/02 18:53:56 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 56, inMemoryMapOutputs.size() -> 2, commitMemory -> 55, usedMemory ->111

15/10/02 18:53:56 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning

15/10/02 18:53:56 INFO mapred.LocalJobRunner: 2 / 2 copied.

15/10/02 18:53:56 INFO reduce.MergeManagerImpl: finalMerge called with 2 in-memory map-outputs and 0 on-disk map-outputs

15/10/02 18:53:57 INFO mapred.Merger: Merging 2 sorted segments

15/10/02 18:53:57 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 97 bytes

15/10/02 18:53:57 INFO reduce.MergeManagerImpl: Merged 2 segments, 111 bytes to disk to satisfy reduce memory limit

15/10/02 18:53:57 INFO reduce.MergeManagerImpl: Merging 1 files, 113 bytes from disk

15/10/02 18:53:57 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce

15/10/02 18:53:57 INFO mapred.Merger: Merging 1 sorted segments

15/10/02 18:53:57 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 102 bytes

15/10/02 18:53:57 INFO mapred.LocalJobRunner: 2 / 2 copied.

15/10/02 18:53:57 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords

15/10/02 18:53:59 INFO mapred.Task: Task:attempt_local1954603964_0001_r_000000_0 is done. And is in the process of committing

15/10/02 18:53:59 INFO mapred.LocalJobRunner: 2 / 2 copied.

15/10/02 18:53:59 INFO mapred.Task: Task attempt_local1954603964_0001_r_000000_0 is allowed to commit now

15/10/02 18:53:59 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1954603964_0001_r_000000_0' to hdfs://host61:9000/out/_temporary/0/task_local1954603964_0001_r_000000

15/10/02 18:53:59 INFO mapred.LocalJobRunner: reduce > reduce

15/10/02 18:53:59 INFO mapred.Task: Task 'attempt_local1954603964_0001_r_000000_0' done.

15/10/02 18:53:59 INFO mapred.LocalJobRunner: Finishing task: attempt_local1954603964_0001_r_000000_0

15/10/02 18:53:59 INFO mapred.LocalJobRunner: reduce task executor complete.

15/10/02 18:53:59 INFO mapreduce.Job:  map 100% reduce 100%

15/10/02 18:53:59 INFO mapreduce.Job: Job job_local1954603964_0001 completed successfully

15/10/02 18:54:00 INFO mapreduce.Job: Counters: 35

File System Counters

FILE: Number of bytes read=821850

FILE: Number of bytes written=1655956

FILE: Number of read operations=0

FILE: Number of large read operations=0

FILE: Number of write operations=0

HDFS: Number of bytes read=118

HDFS: Number of bytes written=42

HDFS: Number of read operations=22

HDFS: Number of large read operations=0

HDFS: Number of write operations=5

Map-Reduce Framework

Map input records=2

Map output records=10

Map output bytes=87

Map output materialized bytes=119

Input split bytes=196

Combine input records=10

Combine output records=10

Reduce input groups=6

Reduce shuffle bytes=119

Reduce input records=10

Reduce output records=6

Spilled Records=20

Shuffled Maps =2

Failed Shuffles=0

Merged Map outputs=2

GC time elapsed (ms)=352

Total committed heap usage (bytes)=457912320

Shuffle Errors

BAD_ID=0

CONNECTION=0

IO_ERROR=0

WRONG_LENGTH=0

WRONG_MAP=0

WRONG_REDUCE=0

File Input Format Counters

Bytes Read=47

File Output Format Counters

Bytes Written=42

[hadoop@host61 hadoop]$

[hadoop@host61 hadoop]$ ./bin/hadoop fs -ls /out

Found 2 items

-rw-r--r--  3 hadoop supergroup      0 2015-10-02 18:53 /out/_SUCCESS

-rw-r--r--  3 hadoop supergroup     42 2015-10-02 18:53 /out/part-r-00000

[hadoop@host61 hadoop]$ ./bin/hadoop fs -cat /out/_SUCCESS

[hadoop@host61 hadoop]$ ./bin/hadoop fs -cat /out/part-r-00000

file2

first1

is2

second1

the2

this2

[hadoop@host61 hadoop]$

以上是“Hadoop2.7如何配置部署及测试”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文名称:Hadoop2.7如何配置部署及测试-创新互联
网站URL:http://csdahua.cn/article/coiipi.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流