扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
英文原文:https://qbox.io/blog/elasticsearch-search-tuning-5-0-ultimate-guide
成都创新互联是一家集网站建设,双牌企业网站建设,双牌品牌网站建设,网站定制,双牌网站建设报价,网络营销,网络优化,双牌网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
作者:Adam Vanderbush
译者:杨振涛
目录
Elasticsearch搜索调优权威指南,是QBOX在其博客上发布的系列文章之一,本文是该系列的第一篇,主要从文档建模、内存分配、文件系统缓存、GC和硬件等方面介绍了优化查询性能的一些经验。
Elasticsearch 5.0.0确实是在2.x之后的一个大版本,为大家带来了许多新东西。Elasticsearch现在作为Elastic Stack中的一员,与整个技术栈的其他产品的版本号已经对齐,现在Kibana、Logstash、Beats和Elasticsearch全都是5.0版本了。
这个版本的Elasticsearch是目前为止最快、最安全、最弹性,也是最易用的,而且还带来了很多的改进和新特性。
我们已经通过“Elasticsearch性能调优权威指南”系列,介绍了一些性能调优的基本经验和方法,解释了每一步最关键的系统设置和衡量指标。该系列共分下列3个部分:
索引决策也很重要,它对如何搜索数据有很大的影响。如果是一个字符串字段,是否需要分词或归一化?如果是,怎么做?如果是一个数值型属性,需要哪种精度?还有很多其他类型,比如date-time、geospatial shape以及父子关系等,需要更多特别的考虑。
我们也通过一个系列教程讨论了“Elasticsearch索引性能优化”,介绍了一些通用的技巧和方法,来大化索引的吞吐量并降低监控和管理的负载。该教程分如下3个部分:
本文旨在推荐一些搜索调优技术、策略以及Elasticsearch 5.0及以上的推荐特性。
内部对象属性数组并不像期望的那样工作。Lucene 中没有内部对象的概念,所以Elasticsearch把对象层次展开到一个由属性名称和属性值组成的简单列表中。以下列文档为例:
curl -XPUT 'localhost:9200/my_index/my_type/1?pretty' -H 'Content-Type: application/json' -d '{
"group" : "fans",
"user" : [
{
"first" : "John",
"last" : "Smith"
},
{
"first" : "Alice",
"last" : "White"
}
]
}'
该请求会在内部转换为如下的文档形式:
{
"group" : "fans",
"user.first" : [ "alice", "john" ],
"user.last" : [ "smith", "white" ]
}
如果需要索引对象数组,并维护数组中每个对象的依赖关系,应当使用内嵌数据类型而不是对象数据类型。内嵌对象在内部会把数组中的每个对象当作单独的隐藏文档来索引,即使用下述内嵌查询,可以单独查询每个内嵌对象:
curl -XPUT 'ES_HOST:ES_PORT/my_index?pretty' -H 'Content-Type: application/json' -d '{
"mappings": {
"my_type": {
"properties": {
"user": {
"type": "nested"
}
}
}
}
}'
curl -XPUT 'ES_HOST:ES_PORT/my_index/my_type/1?pretty' -H 'Content-Type: application/json' -d '{
"group" : "fans",
"user" : [
{
"first" : "John",
"last" : "Smith"
},
{
"first" : "Alice",
"last" : "White"
}
]
}'
curl -XGET 'ES_HOST:ES_PORT/my_index/_search?pretty' -H 'Content-Type: application/json' -d '{
"query": {
"nested": {
"path": "user",
"query": {
"bool": {
"must": [
{ "match": { "user.first": "Alice" }},
{ "match": { "user.last": "Smith" }}
]
}
}
}
}
}'
curl -XGET 'ES_HOST:ES_PORT/my_index/_search?pretty' -H 'Content-Type: application/json' -d '{
"query": {
"nested": {
"path": "user",
"query": {
"bool": {
"must": [
{ "match": { "user.first": "Alice" }},
{ "match": { "user.last": "White" }}
]
}
},
"inner_hits": {
"highlight": {
"fields": {
"user.first": {}
}
}
}
}
}
}'
当有一个主实体比如一篇博客文章,带有一些有一定关系但又不是非常重要的其他实体比如评论时,内嵌对象会非常有用。如果能根据评论内容来查询到博客文章,那就很不错,而且内嵌查询和过滤器一起提供了更快的join查询能力。
内嵌对象模型的缺点如下:
为了 增加 、修改 或 删除 一个内嵌对象文档,整个文档必须重建索引;这就导致内嵌文档越多开销就越大。
搜索请求返回整个文档,而不是只返回匹配的内嵌文档。虽然已经以后计划支持返回根文档的部分最配内嵌文档,但目前仍然不支持。
有时候可能需要把主文档和其关联实体分离,这种分离由父子关系来提供。
通过建立另一个文档的父类型mapping,可以在相同索引的文档之间建立父子关系:
curl -XPUT 'ES_HOST:ES_PORT/my_index?pretty' -H 'Content-Type: application/json' -d '{
"mappings": {
"my_parent": {},
"my_child": {
"_parent": {
"type": "my_parent"
}
}
}
}'
curl -XPUT 'ES_HOST:ES_PORT/my_index/my_parent/1?pretty' -H 'Content-Type: application/json' -d '{
"text": "This is a parent document"
}'
curl -XPUT 'ES_HOST:ES_PORT/my_index/my_child/2?parent=1&pretty' -H 'Content-Type: application/json' -d '{
"text": "This is a child document"
}'
curl -XPUT 'ES_HOST:ES_PORT/my_index/my_child/3?parent=1&refresh=true&pretty' -H 'Content-Type: application/json' -d '{
"text": "This is another child document"
}'
curl -XGET 'ES_HOST:ES_PORT/my_index/my_parent/_search?pretty' -H 'Content-Type: application/json' -d '{
"query": {
"has_child": {
"type": "my_child",
"query": {
"match": {
"text": "child document"
}
}
}
}
}'
父子join对管理实体关系非常有用,尤其是在索引时间比检索时间很重要的情形下,但是它会带来较大的开销;父子查询比同等的内嵌查询要慢5到10倍。
父子关系使用了全局序列号来加速join操作。无论父子map是否使用了内存缓存或磁盘上的doc value,全局序列号仍然需要在索引发生任何改变时进行重建。
分片中的父代越多,全局序列号构建就越耗时。相对于需要父代和较少的子代, 父子关系最适合每个父代有很多子代的情形。
全局序列号默认是 延迟 构建:refresh后的第一个父子查询或聚合请求将会触发构建全局序列号。这会让用户感知到一个明显的潜在峰值。可以使用eager_global_ordinals 来把查询期构建全局序列号的成本转移到refresh期,通过如下方式mapping _parent属性:
curl -XPUT 'ES_HOST:ES_PORT/company -d ‘{
"mappings": {
"branch": {},
"employee": {
"_parent": {
"type": "branch",
"fielddata": {
"loading": "eager_global_ordinals"
}
}
}
}
}’
这里,_parent属性的全局序列号将会在一个新的段搜索可见时被构建。
对于很多的父代,全局序列号要花费数秒钟来构建。此时,需要增加refresh_interval,以便refresh的频率更低,而全局序列号保持可用的时间更长。这将大幅减少每秒钟重建全局序列号的CPU消耗。
对多代数据的Join(参考Grandparents and Grandchildren)能力听起来很吸引人,但需要思考其代价:
对于运行中Elasticsearch,内存是需要密切监控的重要资源之一。Elasticsearch和Lucene通过JVM堆内存和文件系统缓存两种方式来消耗内存。由于Elasticsearch运行在Java虚拟机(JVM)中,所以JVM的GC周期和频率也需要重点监控。
JVM堆内存
对于Elasticsearch一个“刚好合适”的JVM堆大小是非常重要的——不能设置过大或过小,原因见后文。一般来说Elasticsearch的经验值是分配少于50%的可用RAM给JVM堆,且不要超过32GB。
为Elasticsearch分配过少的堆内存,那么就会留给Lucene更多内存,而Lucene重度依赖于文件系统缓存来快速处理请求。不管怎样也不能设置过小的堆内存,因为当应用由于频繁GC而面临短时中断时,可能会遭遇内存溢出错误或吞吐量下降。
Elasticsearch默认安装时设置的JVM堆大小为1GB,这在大多数情况下都偏小。可以通过环境变量来设置期望的对大小并重启Elasticsearch:
export ES_HEAP_SIZE=10g
设置JVM堆大小的另一种方式(相当于设置一样的最小值和大值,以防止重新调整堆大小),是在每次启动Elasticsearch时通过命令行参数指定:
ES_HEAP_SIZE="10g" ./bin/elasticsearch
这两种示例方式都是设置了10GB的堆大小,为了验证是否设置成功,执行:
curl -XGET http://ES_HOST:9200/_cat/nodes?h=heap.max
返回的输出会显示已正确地更新了大堆内存。
垃圾回收
Elasticsearch依靠GC过程来释放堆内存。由于GC本身也要消耗资源(为了释放资源!),所以应当留意GC频率和持续时间,以确认是否需要调整堆内存大小。设置过大的堆内存,换来的是更长的GC时间;这种过多的停顿非常危险,因为可能导致集群误认为该节点网络异常而失联。
因此,Elasticsearch重度依赖文件系统缓存来加速搜索。一般需要保证至少有一半的可用内存用于文件系统缓存,这样Elasticsearch才能保持索引数据的热点区域都在物理内存中。
使用更快的硬件
如果搜索受限于I/O,应当考虑为文件系统缓存分片更多内存(参考前文),或者购买更快的驱动。特别地,SSD公认地比机械磁盘性能好很多。尽可能使用本地存储,避免使用像 NFS 或 SMB 之类的远程或网络文件系统,也要注意像Amazon EBS这样的虚拟化存储。
Elasticsearch使用虚拟化存储工作是没有问题的,它因为快速和安装简单而受欢迎,但同样不幸的是,在基础上与专用的本地存储相比它天生就比较慢。如果在EBS上创建了一个索引库,请确认使用预分配的IOPS,否则很快就会被限流。
如果搜索受限于CPU,那么应当考虑购买更快的CPU。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流