Pytorch之parameters的使用-创新互联

1.预构建网络

创新互联公司是一家集网站建设,寿光企业网站建设,寿光品牌网站建设,网站定制,寿光网站建设报价,网络营销,网络优化,寿光网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    # 1 input image channel, 6 output channels, 5*5 square convolution
    # kernel
 
    self.conv1 = nn.Conv2d(1, 6, 5)
    self.conv2 = nn.Conv2d(6, 16, 5)
    # an affine operation: y = Wx + b
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)
 
  def forward(self, x):
    # max pooling over a (2, 2) window
    x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
    # If size is a square you can only specify a single number
    x = F.max_pool2d(F.relu(self.conv2(x)), 2)
    x = x.view(-1, self.num_flat_features(x))
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x
 
  def num_flat_features(self, x):
    size = x.size()[1:] # all dimensions except the batch dimension
    num_features = 1
    for s in size:
      num_features *= s
    return num_features
 
net = Net()

名称栏目:Pytorch之parameters的使用-创新互联
文章位置:http://csdahua.cn/article/dcpddd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流