go语言的延时处理 go语言chan

go语言可以做什么

1、服务器编程:以前你如果使用C或者C++做的那些事情,用Go来做很合适,例如处理日志、数据打包、虚拟机处理、文件系统等。

创新互联网络公司拥有10年的成都网站开发建设经验,上千余家客户的共同信赖。提供网站设计、成都网站制作、网站开发、网站定制、卖友情链接、建网站、网站搭建、成都响应式网站建设公司、网页设计师打造企业风格,提供周到的售前咨询和贴心的售后服务

2、分布式系统、数据库代理器、中间件:例如Etcd。

3、网络编程:这一块目前应用最广,包括Web应用、API应用、下载应用,而且Go内置的net/http包基本上把我们平常用到的网络功能都实现了。

4、开发云平台:目前国外很多云平台在采用Go开发,我们所熟知的七牛云、华为云等等都有使用Go进行开发并且开源的成型的产品。

5、区块链:目前有一种说法,技术从业人员把Go语言称作为区块链行业的开发语言。如果大家学习区块链技术的话,就会发现现在有很多很多的区块链的系统和应用都是采用Go进行开发的,比如ehtereum是目前知名度最大的公链,再比如fabric是目前最知名的联盟链,两者都有go语言的版本,且go-ehtereum还是以太坊官方推荐的版本。

自1.0版发布以来,go语言引起了众多开发者的关注,并得到了广泛的应用。go语言简单、高效、并发的特点吸引了许多传统的语言开发人员,其数量也在不断增加。

使用 Go 语言开发的开源项目非常多。早期的 Go 语言开源项目只是通过 Go 语言与传统项目进行C语言库绑定实现,例如 Qt、Sqlite 等。

后期的很多项目都使用 Go 语言进行重新原生实现,这个过程相对于其他语言要简单一些,这也促成了大量使用 Go 语言原生开发项目的出现。

Go语言能做什么?

Go 语言被设计成一门应用于搭载 Web 服务器,存储集群或类似用途的巨型中央服务器的系统编程语言。对于高性能分布式系统领域而言,Go 语言无疑比大多数其它语言有着更高的开发效率。学习Go语言,可以说是很简单的,入门快,想学习Go语言,可以到黑马程序员看看,有新出的教程。

golang 读取服务器时间 延迟问题怎么解决

简单减少slave同步延案架构做优化尽量让主库DDL快速执行主库写数据安全性较高比sync_binlog=1innodb_flush_log_at_trx_commit = 1 类设置slave则需要高数据安全完全讲sync_binlog设置0或者关闭binloginnodb_flushlog设置0提高sql执行效率另外使用比主库更硬件设备作slave

mysql-5.6.3已经支持线程主复制原理丁奇类似丁奇表做线程Oracle使用数据库(schema)单位做线程同库使用同复制线程

sync_binlog=1

This makes MySQL synchronize the binary log’s contents to disk each time it commits a transaction

默认情况并每写入都binlog与硬盘同步操作系统或机器(仅仅MySQL服务器)崩溃能binlog语句丢 失要想防止种情况使用sync_binlog全局变量(1安全值慢)使binlog每Nbinlog写入与硬盘 同步即使sync_binlog设置1,现崩溃能表内容binlog内容间存致性使用InnoDB表MySQL服务器 处理COMMIT语句整事务写入binlog并事务提交InnoDB两操作间现崩溃重启事务InnoDB滚仍 存binlog用--innodb-safe-binlog选项增加InnoDB表内容binlog间致性(注释:MySQL 5.1需要--innodb-safe-binlog;由于引入XA事务支持该选项作废)该选项提供更程度安全使每事务 binlog(sync_binlog =1)(默认情况真)InnoDB志与硬盘同步该选项效崩溃重启滚事务MySQL服务器binlog剪切滚 InnoDB事务确保binlog反馈InnoDB表确切数据等并使服务器保持与主服务器保持同步(接收 滚语句)

innodb_flush_log_at_trx_commit (管用)

抱怨Innodb比MyISAM慢 100倍概忘调整值默认值1意思每事务提交或事务外指令都需要志写入(flush)硬盘费特别使用电 池供电缓存(Battery backed up cache)设2于运用特别MyISAM表转意思写入硬盘写入系统缓存志仍每秒flush硬 盘所般丢失超1-2秒更新设0更快点安全面比较差即使MySQL挂能丢失事务数据值2整操作系统 挂才能丢数据

如何用go语言每分钟处理100万个请求

在Malwarebytes 我们经历了显著的增长,自从我一年前加入了硅谷的公司,一个主要的职责成了设计架构和开发一些系统来支持一个快速增长的信息安全公司和所有需要的设施来支持一个每天百万用户使用的产品。我在反病毒和反恶意软件行业的不同公司工作了12年,从而我知道由于我们每天处理大量的数据,这些系统是多么复杂。

有趣的是,在过去的大约9年间,我参与的所有的web后端的开发通常是通过Ruby on Rails技术实现的。不要错怪我。我喜欢Ruby on Rails,并且我相信它是个令人惊讶的环境。但是一段时间后,你会开始以ruby的方式开始思考和设计系统,你会忘记,如果你可以利用多线程、并行、快速执行和小内存开销,软件架构本来应该是多么高效和简单。很多年期间,我是一个c/c++、Delphi和c#开发者,我刚开始意识到使用正确的工具可以把复杂的事情变得简单些。

作为首席架构师,我不会很关心在互联网上的语言和框架战争。我相信效率、生产力。代码可维护性主要依赖于你如何把解决方案设计得很简单。

问题

当工作在我们的匿名遥测和分析系统中,我们的目标是可以处理来自于百万级别的终端的大量的POST请求。web处理服务可以接收包含了很多payload的集合的JSON数据,这些数据需要写入Amazon S3中。接下来,map-reduce系统可以操作这些数据。

按照习惯,我们会调研服务层级架构,涉及的软件如下:

Sidekiq

Resque

DelayedJob

Elasticbeanstalk Worker Tier

RabbitMQ

and so on…

搭建了2个不同的集群,一个提供web前端,另外一个提供后端处理,这样我们可以横向扩展后端服务的数量。

但是,从刚开始,在 讨论阶段我们的团队就知道我们应该使用Go,因为我们看到这会潜在性地成为一个非常庞大( large traffic)的系统。我已经使用了Go语言大约2年时间,我们开发了几个系统,但是很少会达到这样的负载(amount of load)。

我们开始创建一些结构,定义从POST调用得到的web请求负载,还有一个上传到S3 budket的函数。

type PayloadCollection struct {

WindowsVersion string `json:"version"`

Token string `json:"token"`

Payloads []Payload `json:"data"`

}

type Payload struct {

// [redacted]

}

func (p *Payload) UploadToS3() error {

// the storageFolder method ensures that there are no name collision in

// case we get same timestamp in the key name

storage_path := fmt.Sprintf("%v/%v", p.storageFolder, time.Now().UnixNano())

bucket := S3Bucket

b := new(bytes.Buffer)

encodeErr := json.NewEncoder(b).Encode(payload)

if encodeErr != nil {

return encodeErr

}

// Everything we post to the S3 bucket should be marked 'private'

var acl = s3.Private

var contentType = "application/octet-stream"

return bucket.PutReader(storage_path, b, int64(b.Len()), contentType, acl, s3.Options{})

}

本地Go routines方法

刚开始,我们采用了一个非常本地化的POST处理实现,仅仅尝试把发到简单go routine的job并行化:

func payloadHandler(w http.ResponseWriter, r *http.Request) {

if r.Method != "POST" {

w.WriteHeader(http.StatusMethodNotAllowed)

return

}

// Read the body into a string for json decoding

var content = PayloadCollection{}

err := json.NewDecoder(io.LimitReader(r.Body, MaxLength)).Decode(content)

if err != nil {

w.Header().Set("Content-Type", "application/json; charset=UTF-8")

w.WriteHeader(http.StatusBadRequest)

return

}

// Go through each payload and queue items individually to be posted to S3

for _, payload := range content.Payloads {

go payload.UploadToS3() // ----- DON'T DO THIS

}

w.WriteHeader(http.StatusOK)

}

对于中小负载,这会对大多数的人适用,但是大规模下,这个方案会很快被证明不是很好用。我们期望的请求数,不在我们刚开始计划的数量级,当我们把第一个版本部署到生产环境上。我们完全低估了流量。

上面的方案在很多地方很不好。没有办法控制我们产生的go routine的数量。由于我们收到了每分钟1百万的POST请求,这段代码很快就崩溃了。

再次尝试

我们需要找一个不同的方式。自开始我们就讨论过, 我们需要保持请求处理程序的生命周期很短,并且进程在后台产生。当然,这是你在Ruby on Rails的世界里必须要做的事情,否则你会阻塞在所有可用的工作 web处理器上,不管你是使用puma、unicore还是passenger(我们不要讨论JRuby这个话题)。然后我们需要利用常用的处理方案来做这些,比如Resque、 Sidekiq、 SQS等。这个列表会继续保留,因为有很多的方案可以实现这些。

所以,第二次迭代,我们创建了一个缓冲channel,我们可以把job排队,然后把它们上传到S3。因为我们可以控制我们队列中的item最大值,我们有大量的内存来排列job,我们认为只要把job在channel里面缓冲就可以了。

var Queue chan Payload

func init() {

Queue = make(chan Payload, MAX_QUEUE)

}

func payloadHandler(w http.ResponseWriter, r *http.Request) {

...

// Go through each payload and queue items individually to be posted to S3

for _, payload := range content.Payloads {

Queue - payload

}

...

}

接下来,我们再从队列中取job,然后处理它们。我们使用类似于下面的代码:

func StartProcessor() {

for {

select {

case job := -Queue:

job.payload.UploadToS3() // -- STILL NOT GOOD

}

}

}

说实话,我不知道我们在想什么。这肯定是一个满是Red-Bulls的夜晚。这个方法不会带来什么改善,我们用了一个 有缺陷的缓冲队列并发,仅仅是把问题推迟了。我们的同步处理器同时仅仅会上传一个数据到S3,因为来到的请求远远大于单核处理器上传到S3的能力,我们的带缓冲channel很快达到了它的极限,然后阻塞了请求处理逻辑的queue更多item的能力。

我们仅仅避免了问题,同时开始了我们的系统挂掉的倒计时。当部署了这个有缺陷的版本后,我们的延时保持在每分钟以常量增长。

最好的解决方案

我们讨论过在使用用Go channel时利用一种常用的模式,来创建一个二级channel系统,一个来queue job,另外一个来控制使用多少个worker来并发操作JobQueue。

想法是,以一个恒定速率并行上传到S3,既不会导致机器崩溃也不好产生S3的连接错误。这样我们选择了创建一个Job/Worker模式。对于那些熟悉Java、C#等语言的开发者,可以把这种模式想象成利用channel以golang的方式来实现了一个worker线程池,作为一种替代。

var (

MaxWorker = os.Getenv("MAX_WORKERS")

MaxQueue = os.Getenv("MAX_QUEUE")

)

// Job represents the job to be run

type Job struct {

Payload Payload

}

// A buffered channel that we can send work requests on.

var JobQueue chan Job

// Worker represents the worker that executes the job

type Worker struct {

WorkerPool chan chan Job

JobChannel chan Job

quit chan bool

}

func NewWorker(workerPool chan chan Job) Worker {

return Worker{

WorkerPool: workerPool,

JobChannel: make(chan Job),

quit: make(chan bool)}

}

// Start method starts the run loop for the worker, listening for a quit channel in

// case we need to stop it

func (w Worker) Start() {

go func() {

for {

// register the current worker into the worker queue.

w.WorkerPool - w.JobChannel

select {

case job := -w.JobChannel:

// we have received a work request.

if err := job.Payload.UploadToS3(); err != nil {

log.Errorf("Error uploading to S3: %s", err.Error())

}

case -w.quit:

// we have received a signal to stop

return

}

}

}()

}

// Stop signals the worker to stop listening for work requests.

func (w Worker) Stop() {

go func() {

w.quit - true

}()

}

我们已经修改了我们的web请求handler,用payload创建一个Job实例,然后发到JobQueue channel,以便于worker来获取。

func payloadHandler(w http.ResponseWriter, r *http.Request) {

if r.Method != "POST" {

w.WriteHeader(http.StatusMethodNotAllowed)

return

}

// Read the body into a string for json decoding

var content = PayloadCollection{}

err := json.NewDecoder(io.LimitReader(r.Body, MaxLength)).Decode(content)

if err != nil {

w.Header().Set("Content-Type", "application/json; charset=UTF-8")

w.WriteHeader(http.StatusBadRequest)

return

}

// Go through each payload and queue items individually to be posted to S3

for _, payload := range content.Payloads {

// let's create a job with the payload

work := Job{Payload: payload}

// Push the work onto the queue.

JobQueue - work

}

w.WriteHeader(http.StatusOK)

}

在web server初始化时,我们创建一个Dispatcher,然后调用Run()函数创建一个worker池子,然后开始监听JobQueue中的job。

dispatcher := NewDispatcher(MaxWorker)

dispatcher.Run()

下面是dispatcher的实现代码:

type Dispatcher struct {

// A pool of workers channels that are registered with the dispatcher

WorkerPool chan chan Job

}

func NewDispatcher(maxWorkers int) *Dispatcher {

pool := make(chan chan Job, maxWorkers)

return Dispatcher{WorkerPool: pool}

}

func (d *Dispatcher) Run() {

// starting n number of workers

for i := 0; i d.maxWorkers; i++ {

worker := NewWorker(d.pool)

worker.Start()

}

go d.dispatch()

}

func (d *Dispatcher) dispatch() {

for {

select {

case job := -JobQueue:

// a job request has been received

go func(job Job) {

// try to obtain a worker job channel that is available.

// this will block until a worker is idle

jobChannel := -d.WorkerPool

// dispatch the job to the worker job channel

jobChannel - job

}(job)

}

}

}

注意到,我们提供了初始化并加入到池子的worker的最大数量。因为这个工程我们利用了Amazon Elasticbeanstalk带有的docker化的Go环境,所以我们常常会遵守12-factor方法论来配置我们的生成环境中的系统,我们从环境变了读取这些值。这种方式,我们控制worker的数量和JobQueue的大小,所以我们可以很快的改变这些值,而不需要重新部署集群。

var (

MaxWorker = os.Getenv("MAX_WORKERS")

MaxQueue = os.Getenv("MAX_QUEUE")

)

直接结果

我们部署了之后,立马看到了延时降到微乎其微的数值,并未我们处理请求的能力提升很大。

Elastic Load Balancers完全启动后,我们看到ElasticBeanstalk 应用服务于每分钟1百万请求。通常情况下在上午时间有几个小时,流量峰值超过每分钟一百万次。

我们一旦部署了新的代码,服务器的数量从100台大幅 下降到大约20台。

我们合理配置了我们的集群和自动均衡配置之后,我们可以把服务器的数量降至4x EC2 c4.Large实例,并且Elastic Auto-Scaling设置为如果CPU达到5分钟的90%利用率,我们就会产生新的实例。

总结

在我的书中,简单总是获胜。我们可以使用多队列、后台worker、复杂的部署设计一个复杂的系统,但是我们决定利用Elasticbeanstalk 的auto-scaling的能力和Go语言开箱即用的特性简化并发。

我们仅仅用了4台机器,这并不是什么新鲜事了。可能它们还不如我的MacBook能力强大,但是却处理了每分钟1百万的写入到S3的请求。

处理问题有正确的工具。当你的 Ruby on Rails 系统需要更强大的web handler时,可以考虑下ruby生态系统之外的技术,或许可以得到更简单但更强大的替代方案。


网站名称:go语言的延时处理 go语言chan
网站网址:http://csdahua.cn/article/dddppih.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流