扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
时间序列数据在数据科学领域无处不在,在量化金融领域也十分常见,可以用于分析价格趋势,预测价格,探索价格行为等。
学会对时间序列数据进行可视化,能够帮助我们更加直观地探索时间序列数据,寻找其潜在的规律。
本文会利用Python中的matplotlib【1】库,并配合实例进行讲解。matplotlib库是一个用于创建出版质量图表的桌面绘图包(2D绘图库),是Python中最基本的可视化工具。
【工具】Python 3
【数据】Tushare
【注】示例注重的是方法的讲解,请大家灵活掌握。
1.单个时间序列
首先,我们从tushare.pro获取指数日线行情数据,并查看数据类型。
import tushare as ts import pandas as pd pd.set_option('expand_frame_repr', False) # 显示所有列 ts.set_token('your token') pro = ts.pro_api() df = pro.index_daily(ts_code='399300.SZ')[['trade_date', 'close']] df.sort_values('trade_date', inplace=True) df.reset_index(inplace=True, drop=True) print(df.head()) trade_date close 0 20050104 982.794 1 20050105 992.564 2 20050106 983.174 3 20050107 983.958 4 20050110 993.879 print(df.dtypes) trade_date object close float64 dtype: object
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流