go语言的携程调度机制 go语言的携程调度机制是什么

协程与异步IO

协程,又称微线程,纤程。英文名 Coroutine 。Python对协程的支持是通过 generator 实现的。在generator中,我们不但可以通过for循环来迭代,还可以不断调用 next()函数 获取由 yield 语句返回的下一个值。但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。yield其实是终端当前的函数,返回给调用方。python3中使用yield来实现range,节省内存,提高性能,懒加载的模式。

创新互联是一家专注于成都网站设计、成都网站建设与策划设计,宣威网站建设哪家好?创新互联做网站,专注于网站建设十余年,网设计领域的专业建站公司;建站业务涵盖:宣威等地区。宣威做网站价格咨询:18980820575

asyncio是Python 3.4 版本引入的 标准库 ,直接内置了对异步IO的支持。

从Python 3.5 开始引入了新的语法 async 和 await ,用来简化yield的语法:

import asyncio

import threading

async def compute(x, y):

print("Compute %s + %s ..." % (x, y))

print(threading.current_thread().name)

await asyncio.sleep(x + y)

return x + y

async def print_sum(x, y):

result = await compute(x, y)

print("%s + %s = %s" % (x, y, result))

print(threading.current_thread().name)

if __name__ == "__main__":

loop = asyncio.get_event_loop()

tasks = [print_sum(1, 2), print_sum(3, 4)]

loop.run_until_complete(asyncio.wait(tasks))

loop.close()

线程是内核进行抢占式的调度的,这样就确保了每个线程都有执行的机会。而 coroutine 运行在同一个线程中,由语言的运行时中的 EventLoop(事件循环) 来进行调度。和大多数语言一样,在 Python 中,协程的调度是非抢占式的,也就是说一个协程必须主动让出执行机会,其他协程才有机会运行。

让出执行的关键字就是 await。也就是说一个协程如果阻塞了,持续不让出 CPU,那么整个线程就卡住了,没有任何并发。

PS: 作为服务端,event loop最核心的就是IO多路复用技术,所有来自客户端的请求都由IO多路复用函数来处理;作为客户端,event loop的核心在于利用Future对象延迟执行,并使用send函数激发协程,挂起,等待服务端处理完成返回后再调用CallBack函数继续下面的流程

Go语言的协程是 语言本身特性 ,erlang和golang都是采用了CSP(Communicating Sequential Processes)模式(Python中的协程是eventloop模型),但是erlang是基于进程的消息通信,go是基于goroutine和channel的通信。

Python和Go都引入了消息调度系统模型,来避免锁的影响和进程/线程开销大的问题。

协程从本质上来说是一种用户态的线程,不需要系统来执行抢占式调度,而是在语言层面实现线程的调度 。因为协程 不再使用共享内存/数据 ,而是使用 通信 来共享内存/锁,因为在一个超级大系统里具有无数的锁,共享变量等等会使得整个系统变得无比的臃肿,而通过消息机制来交流,可以使得每个并发的单元都成为一个独立的个体,拥有自己的变量,单元之间变量并不共享,对于单元的输入输出只有消息。开发者只需要关心在一个并发单元的输入与输出的影响,而不需要再考虑类似于修改共享内存/数据对其它程序的影响。

【golang详解】go语言GMP(GPM)原理和调度

Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。

首先介绍一下GMP什么意思:

G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。

M ---------- thread内核级线程,所有的G都要放在M上才能运行。

P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。

Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行

模型图:

避免频繁的创建、销毁线程,而是对线程的复用。

1)work stealing机制

当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。

2)hand off机制

当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:

如果有空闲的P,则获取一个P,继续执行G0。

如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。

如下图

GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行

在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。

具体可以去看另一篇文章

【Golang详解】go语言调度机制 抢占式调度

当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。

协程经历过程

我们创建一个协程 go func()经历过程如下图:

说明:

这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。

G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;

一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G

上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。

work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。

如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。

Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:

用户态阻塞/唤醒

当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。

系统调用阻塞

当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。

队列轮转

可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。

M0

M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了

G0

G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0

一个G由于调度被中断,此后如何恢复?

中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。

我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码

参考: ()

()

Go中的特殊协程g0

【译文】 原文地址

本文基于go 1.13版本

所有在Go中创建的goroutines都由一个内部调度程序的管理。Go调度程序试图给所有的goroutines分配运行时间,并且在当前goroutine被阻塞或终止情况下也能使CPU忙于运行其他goroutines。

Go通过GOMAXPROCS变量来限制操作系统线程同时运行的数量。这意味着,Go必须在每个正在运行的线程上调度和管理所有的goroutines。这个角色通过一个特殊的goroutine来完成,称为g0,这是为每个操作系统线程创建的第一个goroutine:

当goroutine被阻塞在channel上时,当前的goroutine就会被挂起,即处于等待模式将不会推入任何goroutines队列中。

收到消息的goroutine将切换到g0,然后将挂起的goroutine放入到本地调度队列中:

尽管g0这个特殊goroutine是管理调度的,但是它不止这些工作还有其他更多的功能。

与普通goroutine相反,g0有固定且比较大的栈。这允许Go在需要更大栈时,还能执行操作。g0的职责可以如下:


分享名称:go语言的携程调度机制 go语言的携程调度机制是什么
链接地址:http://csdahua.cn/article/ddschoo.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流