如何通过Redis实现分布式锁-创新互联

这篇文章主要介绍“如何通过Redis实现分布式锁”,在日常操作中,相信很多人在如何通过Redis实现分布式锁问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”如何通过Redis实现分布式锁”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

成都创新互联是创新、创意、研发型一体的综合型网站建设公司,自成立以来公司不断探索创新,始终坚持为客户提供满意周到的服务,在本地打下了良好的口碑,在过去的十年时间我们累计服务了上千家以及全国政企客户,如办公窗帘等企业单位,完善的项目管理流程,严格把控项目进度与质量监控加上过硬的技术实力获得客户的一致夸奖。

常用的 SQL 数据库的数据都是存在磁盘中的,虽然在数据库底层也做了对应的缓存来减少数据库的 IO 压力。
由于数据库的缓存一般是针对查询的内容,而且粒度也比较小,一般只有表中的数据没有发生变动的时候,数据库的缓存才会产生作用。但这并不能减少业务逻辑对数据库的增删改操作的 IO 压力,因此缓存技术应运而生,该技术实现了对热点数据的高速缓存,可以大大缓解后端数据库的压力。

1、主流应用架构:

客户端在对数据库发起请求时,先到缓存层查看是否有所需的数据,如果缓存层存有客户端所需的数据,则直接从缓存层返回,否则进行穿透查询,对数据库进行查询。如果在数据库中查询到该数据,则将该数据回写到缓存层,以便下次客户端再次查询能够直接从缓存层获取数据。

2、为什么 Redis 能这么快

Redis 的效率很高,官方给出的数据是 100000+QPS,这是因为:Redis 完全基于内存,绝大部分请求是纯粹的内存操作,执行效率高。Redis 使用单进程单线程模型的(K,V)数据库,将数据存储在内存中,存取均不会受到硬盘 IO 的限制,因此其执行速度极快。另外单线程也能处理高并发请求,还可以避免频繁上下文切换和锁的竞争,如果想要多核运行也可以启动多个实例。

数据结构简单,对数据操作也简单,Redis 不使用表,不会强制用户对各个关系进行关联,不会有复杂的关系限制,其存储结构就是键值对,类似于 HashMap,HashMap 大的优点就是存取的时间复杂度为 O(1)。
Redis 使用多路 I/O 复用模型,为非阻塞 IO。注:Redis 采用的 I/O 多路复用函数:epoll/kqueue/evport/select。

选用策略:

因地制宜,优先选择时间复杂度为 O(1) 的 I/O 多路复用函数作为底层实现。由于 Select 要遍历每一个 IO,所以其时间复杂度为 O(n),通常被作为保底方案。基于 React 设计模式监听 I/O 事件。

3、Redis 的数据类型

String:最基本的数据类型,其值大可存储 512M,二进制安全(Redis 的 String 可以包含任何二进制数据,包含 jpg 对象等)。注:如果重复写入 key 相同的键值对,后写入的会将之前写入的覆盖。

Hash:String 元素组成的字典,适用于存储对象。

List:列表,按照 String 元素插入顺序排序。其顺序为后进先出。由于其具有栈的特性,所以可以实现如“最新消息排行榜”这类的功能。

Set:String 元素组成的无序集合,通过哈希表实现(增删改查时间复杂度为 O(1)),不允许重复。另外,当我们使用 Smembers 遍历 Set 中的元素时,其顺序也是不确定的,是通过 Hash 运算过后的结果。Redis 还对集合提供了求交集、并集、差集等操作,可以实现如同共同关注,共同好友等功能。

Sorted Set:通过分数来为集合中的成员进行从小到大的排序。

更高级的Redis类型:用于计数的HyperLogLog、用于支持存储地理位置信息的 Geo。

4、如何通过 Redis 实现分布式锁

分布式锁:分布式锁是控制分布式系统之间共同访问共享资源的一种锁的实现。如果一个系统,或者不同系统的不同主机之间共享某个资源时,往往需要互斥,来排除干扰,满足数据一致性。

分布式锁需要解决的问题如下:

互斥性:任意时刻只有一个客户端获取到锁,不能有两个客户端同时获取到锁。

安全性:锁只能被持有该锁的客户端删除,不能由其他客户端删除。

死锁:获取锁的客户端因为某些原因而宕机继而无法释放锁,其他客户端再也无法获取锁而导致死锁,此时需要有特殊机制来避免死锁。

容错:当各个节点,如某个 Redis 节点宕机的时候,客户端仍然能够获取锁或释放锁。

5、如何实现异步队列

(1)使用 Redis 中的 List 作为队列

使用上文所说的 Redis 的数据结构中的 List 作为队列 Rpush 生产消息,LPOP 消费消息。此时我们可以看到,该队列是使用 Rpush 生产队列,使用 LPOP 消费队列。在这个生产者-消费者队列里,当 LPOP 没有消息时,证明该队列中没有元素,并且生产者还没有来得及生产新的数据。

缺点:LPOP 不会等待队列中有值之后再消费,而是直接进行消费。

弥补:可以通过在应用层引入 Sleep 机制去调用 LPOP 重试。

(2)使用 BLPOP key [key…] timeout

BLPOP key [key …] timeout:阻塞直到队列有消息或者超时。

缺点:按照此种方法,我们生产后的数据只能提供给各个单一消费者消费。能否实现生产一次就能让多个消费者消费呢?

(3)Pub/Sub:主题订阅者模式

发送者(Pub)发送消息,订阅者(Sub)接收消息。订阅者可以订阅任意数量的频道。Pub/Sub模式的缺点:消息的发布是无状态的,无法保证可达。对于发布者来说,消息是“即发即失”的。此时如果某个消费者在生产者发布消息时下线,重新上线之后,是无法接收该消息的,要解决该问题需要使用专业的消息队列,如 Kafka…此处不再赘述。

6、Redis 持久化

(1)什么是持久化?

持久化,即将数据持久存储,而不因断电或其他各种复杂外部环境影响数据的完整性。由于 Redis 将数据存储在内存而不是磁盘中,所以内存一旦断电,Redis 中存储的数据也随即消失,这往往是用户不期望的,所以 Redis 有持久化机制来保证数据的安全性。

(2)Redis 如何做持久化

Redis 目前有两种持久化方式,即 RDB 和 AOF,RDB 是通过保存某个时间点的全量数据快照实现数据的持久化,当恢复数据时,直接通过 RDB 文件中的快照,将数据恢复。如何从海量数据里快速找到所需?

①分片:按照某种规则去划分数据,分散存储在多个节点上。通过将数据分到多个 Redis 服务器上,来减轻单个 Redis 服务器的压力。

②一致性 Hash 算法:既然要将数据进行分片,那么通常的做法就是获取节点的 Hash 值,然后根据节点数求模。但这样的方法有明显的弊端,当 Redis 节点数需要动态增加或减少的时候,会造成大量的 Key 无法被命中。所以 Redis 中引入了一致性 Hash 算法。该算法对 2^32 取模,将 Hash 值空间组成虚拟的圆环,整个圆环按顺时针方向组织,每个节点依次为 0、1、2…2^32-1。

之后将每个服务器进行 Hash 运算,确定服务器在这个 Hash 环上的地址,确定了服务器地址后,对数据使用同样的 Hash 算法,将数据定位到特定的 Redis 服务器上。如果定位到的地方没有 Redis 服务器实例,则继续顺时针寻找,找到的第一台服务器即该数据最终的服务器位置。

③Hash 环的数据倾斜问题
Hash 环在服务器节点很少的时候,容易遇到服务器节点不均匀的问题,这会造成数据倾斜,数据倾斜指的是被缓存的对象大部分集中在 Redis 集群的其中一台或几台服务器上。一致性 Hash 算法运算后的数据大部分被存放在 A 节点上,而 B 节点只存放了少量的数据,久而久之 A 节点将被撑爆。针对这一问题,可以引入虚拟节点解决。简单地说,就是为每一个服务器节点计算多个 Hash,每个计算结果位置都放置一个此服务器节点,称为虚拟节点,可以在服务器 IP 或者主机名后放置一个编号实现。

到此,关于“如何通过Redis实现分布式锁”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联成都网站设计公司网站,小编会继续努力为大家带来更多实用的文章!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前标题:如何通过Redis实现分布式锁-创新互联
新闻来源:http://csdahua.cn/article/dggpsd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流