利用Pytorch如何实现压缩Tensor维度和扩展Tensor维度-创新互联

这篇文章将为大家详细讲解有关利用Pytorch如何实现压缩Tensor维度和扩展Tensor维度,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

专注于为中小企业提供成都网站制作、网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业朔州免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了超过千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

1. 扩展Tensor维度

  相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用到3维或4维数据,那么我们需要扩展这个维度。其实特别简单,只要对数据加一个扩展维度方法就可以了。

1.1torch.unsqueeze(self: Tensor, dim: _int)

  torch.unsqueeze(self: Tensor, dim: _int)

  参数说明:self:输入的tensor数据,dim:要对哪个维度扩展就输入那个维度的整数,可以输入0,1,2……

1.2Code

第一种方式,输入数据后直接加unsqueeze()

  扩展第一维和第二维为1

import torch


def reset_unsqueeze1():
 data = torch.rand([3, 3])
 data1 = data.unsqueeze(dim=0).unsqueeze(dim=1)
 print("data_size: ", data.shape)
 print("data: ", data)
 print("data1_size: ", data1.shape)
 print("data1: ", data1)

分享标题:利用Pytorch如何实现压缩Tensor维度和扩展Tensor维度-创新互联
文章源于:http://csdahua.cn/article/dgoipp.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流