Python中的Numpy矩阵操作-创新互联

Numpy

在肇东等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供做网站、网站制作 网站设计制作按需设计,公司网站建设,企业网站建设,品牌网站建设,全网整合营销推广,外贸网站制作,肇东网站建设费用合理。

通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包。


NumPy 是一个非常优秀的提供矩阵操作的包。NumPy的主要目标,就是提供多维数组,从而实现矩阵操作。


NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes.


基本操作


 #######################################
# 创建矩阵
#######################################
from numpy import array as matrix, arange

# 创建矩阵
a = arange(15).reshape(3,5)
a

# Out[10]:
# array([[0., 0., 0., 0., 0.],
#    [0., 0., 0., 0., 0.],
#    [0., 0., 0., 0., 0.]])

b = matrix([2,2])
b

# Out[33]: array([2, 2])

c = matrix([[1,2,3,4,5,6],[7,8,9,10,11,12]], dtype=int)
c

 
# Out[40]:
# array([[ 1, 2, 3, 4, 5, 6],
#    [ 7, 8, 9, 10, 11, 12]])

当前文章:Python中的Numpy矩阵操作-创新互联
路径分享:http://csdahua.cn/article/dhdjeh.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流