扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
今天就跟大家聊聊有关DataFrame怎么在Python3.5中使用,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
网站建设哪家好,找创新互联!专注于网页设计、网站建设、微信开发、微信小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了锦州免费建站欢迎大家使用!1、DataFrame的创建
(1)通过二维数组方式创建
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import numpy as np import pandas as pd from pandas import Series,DataFrame #1.DataFrame通过二维数组创建 print("======DataFrame直接通过二维数组创建======") d1 = DataFrame([["a","b","c","d"],[1,2,3,4]]) print(d1) print("======DataFrame借助array二维数组创建======") arr = np.array([ ["jack",78], ["lili",86], ["amy",97], ["tom",100] ]) d2 = DataFrame(arr,index=["01","02","03","04"],columns=["姓名","成绩"]) print(d2) print("========打印行索引========") print(d2.index) print("========打印列索引========") print(d2.columns) print("========打印值========") print(d2.values)
运行结果:
======DataFrame直接通过二维数组创建======
0 1 2 3
0 a b c d
1 1 2 3 4
======DataFrame借助array二维数组创建======
姓名 成绩
01 jack 78
02 lili 86
03 amy 97
04 tom 100
========打印行索引========
Index(['01', '02', '03', '04'], dtype='object')
========打印列索引========
Index(['姓名', '成绩'], dtype='object')
========打印值========
[['jack' '78']
['lili' '86']
['amy' '97']
['tom' '100']]
(2)通过字典方式创建
#2.DataFrame通过字典创建,键作为列索引,键值作为数据值,行索引值自动生成 data = { "apart":['1101',"1102","1103","1104"], "profit":[2000,4000,5000,3500], "month":8 } d3 = DataFrame(data) print(d3) print("========行索引========") print(d3.index) print("========列索引========") print(d3.columns) print("========数据值========") print(d3.values)
运行结果:
apart month profit
0 1101 8 2000
1 1102 8 4000
2 1103 8 5000
3 1104 8 3500
========行索引========
RangeIndex(start=0, stop=4, step=1)
========列索引========
Index(['apart', 'month', 'profit'], dtype='object')
========数据值========
[['1101' 8 2000]
['1102' 8 4000]
['1103' 8 5000]
['1104' 8 3500]]
2、DataFrame数据获取
import numpy as np import pandas as pd from pandas import Series,DataFrame #3.DataFrame获取数据 data = { "apart":['1101',"1102","1103","1104"], "profit":[2000,4000,5000,3500], "month":8 } d3 = DataFrame(data) print(d3) print("======获取一列数据======") print(d3["apart"]) print("======获取一行数据======") print(d3.ix[1]) print("======修改数据值======") d3["month"] = [7,8,9,10] #修改值 d3["year"] = [2001,2001,2003,2004] #新增列 d3.ix["4"] = np.NaN print(d3)
运行结果:
apart month profit
0 1101 8 2000
1 1102 8 4000
2 1103 8 5000
3 1104 8 3500
======获取一列数据======
0 1101
1 1102
2 1103
3 1104
Name: apart, dtype: object
======获取一行数据======
apart 1102
month 8
profit 4000
Name: 1, dtype: object
======修改数据值======
apart month profit year
0 1101 7.0 2000.0 2001.0
1 1102 8.0 4000.0 2001.0
2 1103 9.0 5000.0 2003.0
3 1104 10.0 3500.0 2004.0
4 NaN NaN NaN NaN
3、pandas基本功能
(1)pandas数据文件读取
import numpy as np import pandas as pd from pandas import Series,DataFrame #pandas基本操作 #1.数据文件读取 df = pd.read_csv("data.csv") print(df)
运行结果:
name age source
0 gerry 18 98.5
1 tom 21 78.2
2 lili 24 98.5
3 john 20 89.2
(2)数据过滤获取
import numpy as np import pandas as pd from pandas import Series,DataFrame #pandas基本操作 #1.数据文件读取 df = pd.read_csv("data.csv") print(df) #2.数据过滤获取 columns = ["姓名","年龄","成绩"] df.columns = columns #更改列索引 print("=======更改列索引========") print(df) #获取几列的值 df1 = df[columns[1:]] print("=======获取几列的值========") print(df1) print("=======获取几行的值========") print(df.ix[1:3]) #删除含有NaN值的行 df2 = df1.dropna() print("=======删除含有NaN值的行=======") print(df2)
运行结果:
name age source
0 gerry 18 98.5
1 tom 21 NaN
2 lili 24 98.5
3 john 20 89.2
=======更改列索引========
姓名 年龄 成绩
0 gerry 18 98.5
1 tom 21 NaN
2 lili 24 98.5
3 john 20 89.2
=======获取几列的值========
年龄 成绩
0 18 98.5
1 21 NaN
2 24 98.5
3 20 89.2
=======获取几行的值========
姓名 年龄 成绩
1 tom 21 NaN
2 lili 24 98.5
3 john 20 89.2
=======删除含有NaN值的行=======
年龄 成绩
0 18 98.5
2 24 98.5
3 20 89.2
看完上述内容,你们对DataFrame怎么在Python3.5中使用有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联成都网站设计公司行业资讯频道,感谢大家的支持。
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流