Redis分布式锁的实现原理介绍-创新互联

这篇文章主要讲解了“Redis分布式锁的实现原理介绍”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Redis分布式锁的实现原理介绍”吧!

创新互联建站自成立以来,一直致力于为企业提供从网站策划、网站设计、网站设计、成都网站制作、电子商务、网站推广、网站优化到为企业提供个性化软件开发等基于互联网的全面整合营销服务。公司拥有丰富的网站建设和互联网应用系统开发管理经验、成熟的应用系统解决方案、优秀的网站开发工程师团队及专业的网站设计师团队。

一、写在前面

现在面试,一般都会聊聊分布式系统这块的东西。通常面试官都会从服务框架(Spring Cloud、Dubbo)聊起,一路聊到分布式事务、分布式锁、ZooKeeper等知识。

所以咱们这篇文章就来聊聊分布式锁这块知识,具体的来看看Redis分布式锁的实现原理。

说实话,如果在公司里落地生产环境用分布式锁的时候,一定是会用开源类库的,比如Redis分布式锁,一般就是用Redisson框架就好了,非常的简便易用。

大家如果有兴趣,可以去看看Redisson的官网,看看如何在项目中引入Redisson的依赖,然后基于Redis实现分布式锁的加锁与释放锁。

下面给大家看一段简单的使用代码片段,先直观的感受一下:

Redis分布式锁的实现原理介绍

怎么样,上面那段代码,是不是感觉简单的不行!

此外,人家还支持redis单实例、redis哨兵、redis cluster、redis master-slave等各种部署架构,都可以给你完美实现。

二、Redisson实现Redis分布式锁的底层原理

好的,接下来就通过一张手绘图,给大家说说Redisson这个开源框架对Redis分布式锁的实现原理。

Redis分布式锁的实现原理介绍

(1)加锁机制

咱们来看上面那张图,现在某个客户端要加锁。如果该客户端面对的是一个redis cluster集群,他首先会根据hash节点选择一台机器。

这里注意,仅仅只是选择一台机器!这点很关键!

紧接着,就会发送一段lua脚本到redis上,那段lua脚本如下所示:

Redis分布式锁的实现原理介绍

为啥要用lua脚本呢?

因为一大坨复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性。

那么,这段lua脚本是什么意思呢?

KEYS[1]代表的是你加锁的那个key,比如说:

RLock lock = redisson.getLock("myLock");

这里你自己设置了加锁的那个锁key就是“myLock”。

ARGV[1]代表的就是锁key的默认生存时间,默认30秒。

ARGV[2]代表的是加锁的客户端的ID,类似于下面这样:

8743c9c0-0795-4907-87fd-6c719a6b4586:1

给大家解释一下,第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。

如何加锁呢?很简单,用下面的命令:

hset myLock

8743c9c0-0795-4907-87fd-6c719a6b4586:1 1

通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:

Redis分布式锁的实现原理介绍

上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。

接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。

好了,到此为止,ok,加锁完成了。

(2)锁互斥机制

那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?

很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。

接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。

所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时间。比如还剩15000毫秒的生存时间。

此时客户端2会进入一个while循环,不停的尝试加锁。

(3)watch dog自动延期机制

客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?

简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。

(4)可重入加锁机制

那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?

比如下面这种代码:

Redis分布式锁的实现原理介绍

这时我们来分析一下上面那段lua脚本。

第一个if判断肯定不成立,“exists myLock”会显示锁key已经存在了。

第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”

此时就会执行可重入加锁的逻辑,他会用:

incrby myLock

8743c9c0-0795-4907-87fd-6c71a6b4586:1 1

通过这个命令,对客户端1的加锁次数,累加1。

此时myLock数据结构变为下面这样:

Redis分布式锁的实现原理介绍

大家看到了吧,那个myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数

(5)释放锁机制

如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。

其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。

如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:

“del myLock”命令,从redis里删除这个key。

然后呢,另外的客户端2就可以尝试完成加锁了。

这就是所谓的分布式锁的开源Redisson框架的实现机制。

一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。

(6)上述Redis分布式锁的缺点

其实上面那种方案大的问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例。

但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。

接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。

此时就会导致多个客户端对一个分布式锁完成了加锁。

这时系统在业务语义上一定会出现问题,导致各种脏数据的产生。

所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。

感谢各位的阅读,以上就是“Redis分布式锁的实现原理介绍”的内容了,经过本文的学习后,相信大家对Redis分布式锁的实现原理介绍这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


分享文章:Redis分布式锁的实现原理介绍-创新互联
链接分享:http://csdahua.cn/article/djiddi.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流