python包函数库 python数据库包

Python常用的标准库以及第三方库有哪些?

推荐5个常用的Python标准库:

我们拥有10余年网页设计和网站建设经验,从网站策划到网站制作,我们的网页设计师为您提供的解决方案。为企业提供成都网站建设、成都网站制作、微信开发、微信小程序开发、移动网站建设H5网站设计、等业务。无论您有什么样的网站设计或者设计方案要求,我们都将富于创造性的提供专业设计服务并满足您的需求。

1、os:提供了不少与操作系统相关联的函数库

os包是Python与操作系统的接口。我们可以用os包来实现操作系统的许多功能,比如管理系统进程,改变当前路径,改变文件权限等。但要注意,os包是建立在操作系统的平台上的,许多功能在Windows系统上是无法实现的。另外,在使用os包中,要注意其中的有些功能已经被其他的包取代。

我们通过文件系统来管理磁盘上储存的文件。查找、删除、复制文件以及列出文件列表等都是常见的文件操作。这些功能通常可以在操作系统中看到,但现在可以通过Python标准库中的glob包、shutil包、os.path包以及os包的一些函数等,在Python内部实现。

2、sys:通常用于命令行参数的库

sys包被用于管理Python自身的运行环境。Python是一个解释器,也是一个运行在操作系统上的程序。我们可以用sys包来控制这一程序运行的许多参数,比如说Python运行所能占据的内存和CPU,Python所要扫描的路径等。另一个重要功能是和Python自己的命令行互动,从命令行读取命令和参数。

3、random:用于生成随机数的库

Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。

4、math:提供了数学常数和数学函数

标准库中,Python定义了一些新的数字类型,以弥补之前的数字类型可能的不足。标准库还包含了random包,用于处理随机数相关的功能。math包补充了一些重要的数学常数和数学函数,比如pi、三角函数等等。

5、datetime:日期和时间的操作库

日期和时间的管理并不复杂,但容易犯错。Python的标准库中对日期和时间的管理颇为完善,你不仅可以进行日期时间的查询和变换,还可以对日期时间进行运算。通过这些标准库,还可以根据需要控制日期时间输出的文本格式

在使用Python3时,如果没有相应的函数库可以使用什么命令来 下载

使用 pip 命令行工具在线下载你需要的第三方库。

具体步骤如下:使用pip工具安装软件包的命令是:pipinstallsome到package到name。我们现在下载名字为:requests的第三方库。在命令行窗口中执行下面的命令:pipinstallrequests

这样 requests 第三方库就下载和安装完成了。

Python由荷兰数学和计算机科学研究学会的吉多·范罗苏姆 于1990 年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。

python的内建函数和库函数的区别是什么?

【区别】:

标准库函数都需要import xxx才能取得。

内建函数都在__builtins__里面,在global里直接就能用。

【补充】:

1.python中,我们可以通过对内建的比较函数进行自定义,来实现运算符重载。

我们常用的比较运算符有

大于 对应的内建比较函数为 __gt__()

大于等于 = 对应的内建比较函数为 __ge__()

等于 == 对应的内建比较函数为 __eq__()

小于 对应的内建比较函数为 __lt__()

小于等于 = 对应的内建比较函数为 __le__()

2.库函数(Library function)是把函数放到库里,供别人使用的一种方式。.方法是把一些常用到的函数编完放到一个文件里,供不同的人进行调用。调用的时候把它所在的文件名用#include加到里面就可以了。一般是放到lib文件里的。

参考资料

百度.百度[引用时间2018-4-12]

python常用函数包有哪些?

一些python常用函数包:

1、Urllib3

Urllib3是一个 Python 的 HTTP 客户端,它拥有 Python 标准库中缺少的许多功能:

线程安全

连接池

客户端 SSL/TLS 验证

使用分段编码上传文件

用来重试请求和处理 HTTP 重定向的助手

支持 gzip 和 deflate 编码

HTTP 和 SOCKS 的代理支持

2、Six

six 是一个是 Python 2 和 3 的兼容性库。这个项目旨在支持可同时运行在 Python 2 和 3 上的代码库。它提供了许多可简化 Python 2 和 3 之间语法差异的函数。

3、botocore、boto3、s3transfer、awscli

Botocore是 AWS 的底层接口。Botocore是 Boto3 库(#22)的基础,后者让你可以使用 Amazon S3 和 Amazon EC2 一类的服务。Botocore 还是 AWS-CLI 的基础,后者为 AWS 提供统一的命令行界面。

S3transfer(#7)是用于管理 Amazon S3 传输的 Python 库。它正在积极开发中,其介绍页面不推荐人们现在使用,或者至少等版本固定下来再用,因为其 API 可能发生变化,在次要版本之间都可能更改。Boto3、AWS-CLI和其他许多项目都依赖s3transfer。

4、Pip

pip是“Pip Installs Packages”的首字母递归缩写。

pip很容易使用。要安装一个包只需pip install package name即可,而删除包只需pip uninstall package name即可。

最大优点之一是它可以获取包列表,通常以requirements.txt文件的形式获取。该文件能选择包含所需版本的详细规范。大多数 Python 项目都包含这样的文件。

如果结合使用pip与virtualenv(列表中的 #57),就可以创建可预测的隔离环境,同时不会干扰底层系统,反之亦然。

5、Python-dateutil

python-dateutil模块提供了对标准datetime模块的强大扩展。我的经验是,常规的Python datetime缺少哪些功能,python-dateutil就能补足那一块。

6、Requests

Requests建立在我们的 #1 库——urllib3基础上。它让 Web 请求变得非常简单。相比urllib3来说,很多人更喜欢这个包。而且使用它的最终用户可能也比urllib3更多。后者更偏底层,并且考虑到它对内部的控制级别,它一般是作为其他项目的依赖项。

7、Certifi

近年来,几乎所有网站都转向 SSL,你可以通过地址栏中的小锁符号来识别它。加了小锁意味着与该站点的通信是安全和加密的,能防止窃听行为。

8、Idna

根据其 PyPI 页面,idna提供了“对 RFC5891 中指定的应用程序中国际化域名(IDNA)协议的支持。”

IDNA的核心是两个函数:ToASCII和ToUnicode。ToASCII会将国际 Unicode 域转换为 ASCII 字符串。ToUnicode则逆转该过程。在IDNA包中,这些函数称为idna.encode()和idna.decode()

9、PyYAML

YAML是一种数据序列化格式。它的设计宗旨是让人类和计算机都能很容易地阅读代码——人类很容易读写它的内容,计算机也可以解析它。

PyYAML是 Python 的YAML解析器和发射器,这意味着它可以读写YAML。它会把任何 Python 对象写成YAML:列表、字典,甚至是类实例都包括在内。

10、Pyasn1

像上面的IDNA一样,这个项目也非常有用:

ASN.1 类型和 DER/BER/CER 编码(X.208)的纯 Python 实现

所幸这个已有数十年历史的标准有很多信息可用。ASN.1是 Abstract Syntax Notation One 的缩写,它就像是数据序列化的教父。它来自电信行业。也许你知道协议缓冲区或 Apache Thrift?这就是它们的 1984 年版本。

11、Docutils

Docutils是一个模块化系统,用来将纯文本文档处理为很多有用的格式,例如 HTML、XML 和 LaTeX 等。Docutils能读取reStructuredText格式的纯文本文档,这种格式是类似于 MarkDown 的易读标记语法。

12、Chardet

你可以用chardet模块来检测文件或数据流的字符集。比如说,需要分析大量随机文本时,这会很有用。但你也可以在处理远程下载的数据,但不知道用的是什么字符集时使用它。

13、RSA

rsa包是一个纯 Python 的 RSA 实现。它支持:

加密和解密

签名和验证签名

根据 PKCS#1 1.5 版生成密钥

它既可以用作 Python 库,也能在命令行中使用。

14、Jmespath

JMESPath,发音为“James path”,使 Python 中的 JSON 更容易使用。它允许你声明性地指定如何从 JSON 文档中提取元素。

15、Setuptools

它是用于创建 Python 包的工具。不过,其文档很糟糕。它没有清晰描述它的用途,并且文档中包含无效链接。最好的信息源是这个站点,特别是这个创建 Python 包的指南。

16、Pytz

像dateutils一样,这个库可帮助你处理日期和时间。有时候,时区处理起来可能很麻烦。幸好有这样的包,可以让事情变得简单些。

17、Futures

从 Python 3.2 开始,python 提供current.futures模块,可帮助你实现异步执行。futures 包是该库适用于 Python 2 的 backport。它不适用于 Python3 用户,因为 Python 3 原生提供了该模块。

18、Colorama

使用 Colorama,你可以为终端添加一些颜色:

更多Python知识请关注Python自学网

Python数据分析库有哪些

Python数据分析必备的第三方库:

1、Pandas

Pandas是Python强大、灵活的数据分析和探索工具,包含Serise、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。

Pandas是Python的一个数据分析包,Pandas最初使用用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。

Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。

2、Numpy

Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是Scipy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。

Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。

3、Matplotlib

Matplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。

Matplotlib是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。

Matplotlib是基于Numpy的一套Python包,这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。

4、SciPy

SciPy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。

SciPy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。Scipy依赖于Numpy,并提供许多对用户友好的和有效的数值例程,如数值积分和优化。

5、Keras

Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。

6、Scrapy

Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活的完成各种需求。

7、Gensim

Gensim是用来做文本主题模型的库,常用于处理语言方面的任务,支持TF-IDF、LSA、LDA和Word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。


分享文章:python包函数库 python数据库包
链接分享:http://csdahua.cn/article/docdipd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流