python拟合幂函数 python求幂函数

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

成都创新互联公司是一家集网站建设,东营区企业网站建设,东营区品牌网站建设,网站定制,东营区网站建设报价,网络营销,网络优化,东营区网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:

Python最小二乘法拟合与作图

在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:

这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。

此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:

Python的使用中需要导入相应的模块,此处首先用 import 语句

分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。

接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:

其参数有:

进行拟合时,首先我们需要定义一个目标函数。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:

紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:

返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。

leastsq() 的参数具体有:

输出选项有:

最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:

pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。

pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。

pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。

pylab.show() 函数用于显示图像。

最终结果如下图所示:

用Python作科学计算

numpy.loadtxt

scipy.optimize.leastsq

幂函数怎么用最小二乘法拟合

幂函数用最小二乘法拟合的方法:

1、最小二乘使所有点到曲线的方差最小。

2、利用最小二乘对扫描线上的所有数据点进行拟合,得到一条样条曲线。

3、逐点计算每一个点Pi到样条曲线的欧拉距离ei(即点到曲线的最短距离)即可。

python拟合指数函数初始值如何设定

求拟合函数,首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x),拟合出Ex和En系数。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的。吻合程度用相关系数来衡量,即R^2。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值。 2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素。 3、先来使用append函数对已经创建的列表添加元素,具体如下图所示,会自动在列表的最后的位置添加一个元素。 4、再来使用extend对来添加列表元素,如果是添加多个元素,需要使用列表的形式。 5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置,第二个参数即为插入的元素。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值,也可以不设定参数的初值。

一般而言,拟合结果不会因为初值的不同而有太大的偏差,如果偏差很大,说明数据和函数不太匹配,需要对函数进行改正。X0的迭代初始值选择与求解方程,有着密切的关系。不同的初始值得出的系数是完全不一样的。这要通过多次选择和比较,才能得到较为合理的初值。一般的方法,可以通过随机数并根据方程的特性来初选。

【转】指数、幂函数拟合

转自: python指数、幂数拟合curve_fit

1、一次二次多项式拟合

一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。

2、指数幂数拟合curve_fit

使用scipy.optimize 中的curve_fit,幂数拟合例子如下:

下面是指数拟合例子:

python拟合圆如何设置拟合精度

OpenCV曲线拟合与圆拟合

使用OpenCV做图像处理与分析的时候,经常会遇到需要进行曲线拟合与圆拟合的场景,很多OpenCV开发者对此却是一筹莫展,其实OpenCV中是有现成的函数来实现圆拟合与直线拟合的,而且还会告诉你拟合的圆的半径是多少,简直是超级方便,另外一个常用到的场景就是曲线拟合,常见的是基于多项式拟合,可以根据设定的多项式幂次生成多项式方程,然后根据方程进行一系列的点生成,形成完整的曲线,这个车道线检测,轮廓曲线拟合等场景下特别有用。下面就通过两个简单的例子来分别学习一下曲线拟合与圆拟合的应用。

一:曲线拟合与应用

基于Numpy包的polyfit函数实现,其支持的三个参数分别是x点集合、y点集合,以及多项式的幂次。得到多项式方程以后,就可以完整拟合曲线,图中有如下四个点:

调用polyfit生成的二阶多项式如下:

拟合结果如下:

使用三阶多项式拟合,调用polyfit生成的多项式方程如下:

生成的拟合曲线如下:

使用polyfit进行曲线拟合时候需要注意的是,多项式的幂次最大是数据点数目N - 1幂次多项式,比如有4个点,最多生成3阶多项式拟合。上述演示的完整代码实现如下:

def circle_fitness_demo():

image = np.zeros((400, 400, 3), dtype=np.uint8)

x = np.array([30, 50, 100, 120])

y = np.array([100, 150, 240, 200])

for i in range(len(x)):

cv.circle(image, (x[i], y[i]), 3, (255, 0, 0), -1, 8, 0)

cv.imwrite("D:/curve.png", image)

poly = np.poly1d(np.polyfit(x, y, 3))

print(poly)

for t in range(30, 250, 1):

y_ = np.int(poly(t))

cv.circle(image, (t, y_), 1, (0, 0, 255), 1, 8, 0)

cv.imshow("fit curve", image)

cv.imwrite("D:/fitcurve.png", image)

二:圆拟合与应用

圆的拟合是基于轮廓发现的结果,对发现的近似圆的轮廓,通过圆拟合可以得到比较好的显示效果,轮廓发现与拟合的API分别为findContours与fitEllipse,

有图像如下:

使用轮廓发现与圆拟合处理结果如下:

红色表示拟合的圆,蓝色是圆的中心位置

上述完整的演示代码如下:

def circle_fitness_demo():

src = cv.imread("D:/javaopencv/c2.png")

cv.imshow("input", src)

src = cv.GaussianBlur(src, (3, 3), 0)

gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)

ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)

cv.imshow("binary", binary)

image, contours, hierachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)

for i in range(len(contours)):

rrt = cv.fitEllipse(contours[i])

cv.ellipse(src, rrt, (0, 0, 255), 2, cv.LINE_AA)

x, y = rrt[0]

cv.circle(src, (np.int(x), np.int(y)), 4, (255, 0, 0), -1, 8, 0)

cv.imshow("fit circle", src)

cv.imwrite("D:/fitcircle.png", src)

吾心信其可行,则移山填海之难,终有成功之日;

吾心信其不可行,则反掌折枝之易,亦无收效之期也


分享标题:python拟合幂函数 python求幂函数
当前URL:http://csdahua.cn/article/doceecg.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流