java简单排序代码 java快速排序简单代码

如何用JAVA实现快速排序算法?

本人特地给你编的代码\x0d\x0a亲测\x0d\x0a\x0d\x0apublicclassQuickSort{\x0d\x0a\x0d\x0apublicstaticintPartition(inta[],intp,intr){\x0d\x0aintx=a[r-1];\x0d\x0ainti=p-1;\x0d\x0ainttemp;\x0d\x0afor(intj=p;jif(a[j-1]//swap(a[j-1],a[i-1]);\x0d\x0ai++;\x0d\x0atemp=a[j-1];\x0d\x0aa[j-1]=a[i-1];\x0d\x0aa[i-1]=temp;\x0d\x0a\x0d\x0a}\x0d\x0a}\x0d\x0a//swap(a[r-1,a[i+1-1]);\x0d\x0atemp=a[r-1];\x0d\x0aa[r-1]=a[i+1-1];\x0d\x0aa[i+1-1]=temp;\x0d\x0a\x0d\x0areturni+1;\x0d\x0a\x0d\x0a}\x0d\x0a\x0d\x0apublicstaticvoidQuickSort(inta[],intp,intr){\x0d\x0a\x0d\x0aif(p

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册虚拟主机、营销软件、网站建设、渝中网站维护、网站推广。

写一个简单的JAVA排序程序

// 排序

public class Array

{

public static int[] random(int n) //产生n个随机数,返回整型数组

{

if (n0)

{

int table[] = new int[n];

for (int i=0; itable.length; i++)

table[i] = (int)(Math.random()*100); //产生一个0~100之间的随机数

return table; //返回一个数组

}

return null;

}

public static void print(int[] table) //输出数组元素

{

if (table!=null)

for (int i=0; itable.length; i++)

System.out.print(" "+table[i]);

System.out.println();

}

public static void insertSort(int[] table) //直接插入排序

{ //数组是引用类型,元素值将被改变

System.out.println("直接插入排序");

for (int i=1; itable.length; i++) //n-1趟扫描

{

int temp=table[i], j; //每趟将table[i]插入到前面已排序的序列中

// System.out.print("移动");

for (j=i-1; j-1 temptable[j]; j--) //将前面较大元素向后移动

{

// System.out.print(table[j]+", ");

table[j+1] = table[j];

}

table[j+1] = temp; //temp值到达插入位置

System.out.print("第"+i+"趟: ");

print(table);

}

}

public static void shellSort(int[] table) //希尔排序

{

System.out.println("希尔排序");

for (int delta=table.length/2; delta0; delta/=2) //控制增量,增量减半,若干趟扫描

{

for (int i=delta; itable.length; i++) //一趟中若干组,每个元素在自己所属组内进行直接插入排序

{

int temp = table[i]; //当前待插入元素

int j=i-delta; //相距delta远

while (j=0 temptable[j]) //一组中前面较大的元素向后移动

{

table[j+delta] = table[j];

j-=delta; //继续与前面的元素比较

}

table[j+delta] = temp; //插入元素位置

}

System.out.print("delta="+delta+" ");

print(table);

}

}

private static void swap(int[] table, int i, int j) //交换数组中下标为i、j的元素

{

if (i=0 itable.length j=0 jtable.length i!=j) //判断i、j是否越界

{

int temp = table[j];

table[j] = table[i];

table[i] = temp;

}

}

public static void bubbleSort(int[] table) //冒泡排序

{

System.out.println("冒泡排序");

boolean exchange=true; //是否交换的标记

for (int i=1; itable.length exchange; i++) //有交换时再进行下一趟,最多n-1趟

{

exchange=false; //假定元素未交换

for (int j=0; jtable.length-i; j++) //一次比较、交换

if (table[j]table[j+1]) //反序时,交换

{

int temp = table[j];

table[j] = table[j+1];

table[j+1] = temp;

exchange=true; //有交换

}

System.out.print("第"+i+"趟: ");

print(table);

}

}

public static void quickSort(int[] table) //快速排序

{

quickSort(table, 0, table.length-1);

}

private static void quickSort(int[] table, int low, int high) //一趟快速排序,递归算法

{ //low、high指定序列的下界和上界

if (lowhigh) //序列有效

{

int i=low, j=high;

int vot=table[i]; //第一个值作为基准值

while (i!=j) //一趟排序

{

while (ij vot=table[j]) //从后向前寻找较小值

j--;

if (ij)

{

table[i]=table[j]; //较小元素向前移动

i++;

}

while (ij table[i]vot) //从前向后寻找较大值

i++;

if (ij)

{

table[j]=table[i]; //较大元素向后移动

j--;

}

}

table[i]=vot; //基准值的最终位置

System.out.print(low+".."+high+", vot="+vot+" ");

print(table);

quickSort(table, low, j-1); //前端子序列再排序

quickSort(table, i+1, high); //后端子序列再排序

}

}

public static void selectSort(int[] table) //直接选择排序

{

System.out.println("直接选择排序");

for (int i=0; itable.length-1; i++) //n-1趟排序

{ //每趟在从table[i]开始的子序列中寻找最小元素

int min=i; //设第i个数据元素最小

for (int j=i+1; jtable.length; j++) //在子序列中查找最小值

if (table[j]table[min])

min = j; //记住最小元素下标

if (min!=i) //将本趟最小元素交换到前边

{

int temp = table[i];

table[i] = table[min];

table[min] = temp;

}

System.out.print("第"+i+"趟: ");

print(table);

}

}

private static void sift(int[] table, int low, int high) //将以low为根的子树调整成最小堆

{ //low、high是序列下界和上界

int i=low; //子树的根

int j=2*i+1; //j为i结点的左孩子

int temp=table[i]; //获得第i个元素的值

while (j=high) //沿较小值孩子结点向下筛选

{

if (jhigh table[j]table[j+1]) //数组元素比较(改成为最大堆)

j++; //j为左右孩子的较小者

if (temptable[j]) //若父母结点值较大(改成为最大堆)

{

table[i]=table[j]; //孩子结点中的较小值上移

i=j; //i、j向下一层

j=2*i+1;

}

else

j=high+1; //退出循环

}

table[i]=temp; //当前子树的原根值调整后的位置

System.out.print("sift "+low+".."+high+" ");

print(table);

}

public static void heapSort(int[] table)

{

System.out.println("堆排序");

int n=table.length;

for (int j=n/2-1; j=0; j--) //创建最小堆

sift(table, j, n-1);

// System.out.println("最小堆? "+isMinHeap(table));

for (int j=n-1; j0; j--) //每趟将最小值交换到后面,再调整成堆

{

int temp = table[0];

table[0] = table[j];

table[j] = temp;

sift(table, 0, j-1);

}

}

public static void mergeSort(int[] X) //归并排序

{

System.out.println("归并排序");

int n=1; //已排序的子序列长度,初值为1

int[] Y = new int[X.length]; //Y数组长度同X数组

do

{

mergepass(X, Y, n); //一趟归并,将X数组中各子序列归并到Y中

print(Y);

n*=2; //子序列长度加倍

if (nX.length)

{

mergepass(Y, X, n); //将Y数组中各子序列再归并到X中

print(X);

n*=2;

}

} while (nX.length);

}

private static void mergepass(int[] X, int[] Y, int n) //一趟归并

{

System.out.print("子序列长度n="+n+" ");

int i=0;

while (iX.length-2*n+1)

{

merge(X,Y,i,i+n,n);

i += 2*n;

}

if (i+nX.length)

merge(X,Y,i,i+n,n); //再一次归并

else

for (int j=i; jX.length; j++) //将X剩余元素复制到Y中

Y[j]=X[j];

}

private static void merge(int[] X, int[] Y, int m, int r, int n) //一次归并

{

int i=m, j=r, k=m;

while (ir jr+n jX.length) //将X中两个相邻子序列归并到Y中

if (X[i]X[j]) //较小值复制到Y中

Y[k++]=X[i++];

else

Y[k++]=X[j++];

while (ir) //将前一个子序列剩余元素复制到Y中

Y[k++]=X[i++];

while (jr+n jX.length) //将后一个子序列剩余元素复制到Y中

Y[k++]=X[j++];

}

public static void main(String[] args)

{

// int[] table = {52,26,97,19,66,8,49};//Array.random(9);{49,65,13,81,76,97,38,49};////{85,12,36,24,47,30,53,91,76};//;//{4,5,8,1,2,7,3,6};// {32,26,87,72,26,17};//

int[] table = {13,27,38,49,97,76,49,81}; //最小堆

System.out.print("关键字序列: ");

Array.print(table);

// Array.insertSort(table);

// Array.shellSort(table);

// Array.bubbleSort(table);

// Array.quickSort(table);

// Array.selectSort(table);

// Array.heapSort(table);

// Array.mergeSort(table);

System.out.println("最小堆序列? "+Array.isMinHeap(table));

}

//第9章习题

public static boolean isMinHeap(int[] table) //判断一个数据序列是否为最小堆

{

if (table==null)

return false;

int i = table.length/2 -1; //最深一棵子树的根结点

while (i=0)

{

int j=2*i+1; //左孩子

if (jtable.length)

if (table[i]table[j])

return false;

else

if (j+1table.length table[i]table[j+1]) //右孩子

return false;

i--;

}

return true;

}

}

/*

程序运行结果如下:

关键字序列: 32 26 87 72 26 17 8 40

直接插入排序

第1趟排序: 26 32 87 72 26 17 8 40

第2趟排序: 26 32 87 72 26 17 8 40

第3趟排序: 26 32 72 87 26 17 8 40

第4趟排序: 26 26 32 72 87 17 8 40 //排序算法稳定

第5趟排序: 17 26 26 32 72 87 8 40

第6趟排序: 8 17 26 26 32 72 87 40

第7趟排序: 8 17 26 26 32 40 72 87

关键字序列: 42 1 74 25 45 29 87 53

直接插入排序

第1趟排序: 1 42 74 25 45 29 87 53

第2趟排序: 1 42 74 25 45 29 87 53

第3趟排序: 1 25 42 74 45 29 87 53

第4趟排序: 1 25 42 45 74 29 87 53

第5趟排序: 1 25 29 42 45 74 87 53

第6趟排序: 1 25 29 42 45 74 87 53

第7趟排序: 1 25 29 42 45 53 74 87

关键字序列: 21 12 2 40 99 97 68 57

直接插入排序

第1趟排序: 12 21 2 40 99 97 68 57

第2趟排序: 2 12 21 40 99 97 68 57

第3趟排序: 2 12 21 40 99 97 68 57

第4趟排序: 2 12 21 40 99 97 68 57

第5趟排序: 2 12 21 40 97 99 68 57

第6趟排序: 2 12 21 40 68 97 99 57

第7趟排序: 2 12 21 40 57 68 97 99

关键字序列: 27 38 65 97 76 13 27 49 55 4

希尔排序

delta=5 13 27 49 55 4 27 38 65 97 76

delta=2 4 27 13 27 38 55 49 65 97 76

delta=1 4 13 27 27 38 49 55 65 76 97

关键字序列: 49 38 65 97 76 13 27 49 55 4 //严书

希尔排序

delta=5 13 27 49 55 4 49 38 65 97 76

delta=2 4 27 13 49 38 55 49 65 97 76 //与严书不同

delta=1 4 13 27 38 49 49 55 65 76 97

关键字序列: 65 34 25 87 12 38 56 46 14 77 92 23

希尔排序

delta=6 56 34 14 77 12 23 65 46 25 87 92 38

delta=3 56 12 14 65 34 23 77 46 25 87 92 38

delta=1 12 14 23 25 34 38 46 56 65 77 87 92

关键字序列: 84 12 43 62 86 7 90 91

希尔排序

delta=4 84 7 43 62 86 12 90 91

delta=2 43 7 84 12 86 62 90 91

delta=1 7 12 43 62 84 86 90 91

关键字序列: 32 26 87 72 26 17

冒泡排序

第1趟排序: 26 32 72 26 17 87

第2趟排序: 26 32 26 17 72 87

第3趟排序: 26 26 17 32 72 87

第4趟排序: 26 17 26 32 72 87

第5趟排序: 17 26 26 32 72 87

关键字序列: 1 2 3 4 5 6 7 8

冒泡排序

第1趟排序: 1 2 3 4 5 6 7 8

关键字序列: 1 3 2 4 5 8 6 7

冒泡排序

第1趟排序: 1 2 3 4 5 6 7 8

第2趟排序: 1 2 3 4 5 6 7 8

关键字序列: 4 5 8 1 2 7 3 6

冒泡排序

第1趟排序: 4 5 1 2 7 3 6 8

第2趟排序: 4 1 2 5 3 6 7 8

第3趟排序: 1 2 4 3 5 6 7 8

第4趟排序: 1 2 3 4 5 6 7 8

第5趟排序: 1 2 3 4 5 6 7 8

关键字序列: 38 26 97 19 66 1 5 49

0..7, vot=38 5 26 1 19 38 66 97 49

0..3, vot=5 1 5 26 19 38 66 97 49

2..3, vot=26 1 5 19 26 38 66 97 49

5..7, vot=66 1 5 19 26 38 49 66 97

关键字序列: 38 5 49 26 19 97 1 66

0..7, vot=38 1 5 19 26 38 97 49 66

0..3, vot=1 1 5 19 26 38 97 49 66

1..3, vot=5 1 5 19 26 38 97 49 66

2..3, vot=19 1 5 19 26 38 97 49 66

5..7, vot=97 1 5 19 26 38 66 49 97

5..6, vot=66 1 5 19 26 38 49 66 97

关键字序列: 49 38 65 97 76 13 27 49

0..7, vot=49 49 38 27 13 49 76 97 65

0..3, vot=49 13 38 27 49 49 76 97 65

0..2, vot=13 13 38 27 49 49 76 97 65

1..2, vot=38 13 27 38 49 49 76 97 65

5..7, vot=76 13 27 38 49 49 65 76 97

关键字序列: 27 38 65 97 76 13 27 49 55 4

low=0 high=9 vot=27 4 27 13 27 76 97 65 49 55 38

low=0 high=2 vot=4 4 27 13 27 76 97 65 49 55 38

low=1 high=2 vot=27 4 13 27 27 76 97 65 49 55 38

low=4 high=9 vot=76 4 13 27 27 38 55 65 49 76 97

low=4 high=7 vot=38 4 13 27 27 38 55 65 49 76 97

low=5 high=7 vot=55 4 13 27 27 38 49 55 65 76 97

关键字序列: 38 26 97 19 66 1 5 49

直接选择排序

第0趟排序: 1 26 97 19 66 38 5 49

第1趟排序: 1 5 97 19 66 38 26 49

第2趟排序: 1 5 19 97 66 38 26 49

第3趟排序: 1 5 19 26 66 38 97 49

第4趟排序: 1 5 19 26 38 66 97 49

第5趟排序: 1 5 19 26 38 49 97 66

第6趟排序: 1 5 19 26 38 49 66 97

最小堆

关键字序列: 81 49 76 27 97 38 49 13 65

sift 3..8 81 49 76 13 97 38 49 27 65

sift 2..8 81 49 38 13 97 76 49 27 65

sift 1..8 81 13 38 27 97 76 49 49 65

sift 0..8 13 27 38 49 97 76 49 81 65

13 27 38 49 97 76 49 81 65

sift 0..7 27 49 38 65 97 76 49 81 13

sift 0..6 38 49 49 65 97 76 81 27 13

sift 0..5 49 65 49 81 97 76 38 27 13

sift 0..4 49 65 76 81 97 49 38 27 13

sift 0..3 65 81 76 97 49 49 38 27 13

sift 0..2 76 81 97 65 49 49 38 27 13

sift 0..1 81 97 76 65 49 49 38 27 13

sift 0..0 97 81 76 65 49 49 38 27 13

最大堆

关键字序列: 49 65 13 81 76 27 97 38 49

sift 3..8 49 65 13 81 76 27 97 38 49

sift 2..8 49 65 97 81 76 27 13 38 49

sift 1..8 49 81 97 65 76 27 13 38 49

sift 0..8 97 81 49 65 76 27 13 38 49

97 81 49 65 76 27 13 38 49

sift 0..7 81 76 49 65 49 27 13 38 97

sift 0..6 76 65 49 38 49 27 13 81 97

sift 0..5 65 49 49 38 13 27 76 81 97

sift 0..4 49 38 49 27 13 65 76 81 97

sift 0..3 49 38 13 27 49 65 76 81 97

sift 0..2 38 27 13 49 49 65 76 81 97

sift 0..1 27 13 38 49 49 65 76 81 97

sift 0..0 13 27 38 49 49 65 76 81 97

关键字序列: 52 26 97 19 66 8 49

归并排序

子序列长度n=1 26 52 19 97 8 66 49

子序列长度n=2 19 26 52 97 8 49 66

子序列长度n=4 8 19 26 49 52 66 97

关键字序列: 13 27 38 49 97 76 49 81 65

最小堆序列? true

*/

java怎么让数组的数字从大到小排序?

将数字从大到小排序的方法:

例如简一点的冒泡排序,将第一个数字和后面的数字逐个比较大小,如果小于,则互换位置,大于则不动。此时,第一个数为数组中的最大数。然后再将第二个数与后面的数逐个比较,以次类推。

示例代码如下: 

public class Test { 

public static void main(String[] args) { 

int [] array = {12,3,1254,235,435,236,25,34,23}; 

int temp; 

for (int i = 0; i  array.length; i++) { 

for (int j = i+1; j  array.length; j++) { 

if (array[i]  array[j]) { 

temp = array[i]; 

array[i] = array[j]; 

array[j] = temp; // 两个数交换位置 

for (int i = 0; i  array.length; i++) { 

System.out.print(array[i]+"  "); 

}

数组对于每一门编程语言来说都是重要的数据结构之一,当然不同语言对数组的实现及处理也不尽相同。

Java 语言中提供的数组是用来存储固定大小的同类型元素。

你可以声明一个数组变量,如 numbers[100] 来代替直接声明 100 个独立变量 number0,number1,....,number99

扩展资料

Java中利用数组进行数字排序一般有4种方法:

1、选择排序是先将数组中的第一个数作为最大或最小数,然后通过循环比较交换最大数或最小数与一轮比较中第一个数位置进行排序。

2、冒泡排序也是先将数组中的第一个数作为最大或最小数,循环比较相邻两个数的大小,满足条件就互换位置,将最大数或最小数沉底。

3、快速排序法主要是运用Arrays类中的Arrays.sort方法()实现。

4、插入排序是选择一个数组中的数据,通过不断的插入比较最后进行排序。

java快速排序简单代码

.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是快速排序算法:

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n?),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1. 算法步骤

从数列中挑出一个元素,称为 "基准"(pivot);

重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

2. 动图演示

代码实现 JavaScript 实例 function quickSort ( arr , left , right ) {

var len = arr. length ,

    partitionIndex ,

    left = typeof left != 'number' ? 0 : left ,

    right = typeof right != 'number' ? len - 1 : right ;

if ( left

java冒泡排序法代码

冒泡排序是比较经典的排序算法。代码如下:

for(int i=1;iarr.length;i++){

for(int j=1;jarr.length-i;j++){

//交换位置

}    

拓展资料:

原理:比较两个相邻的元素,将值大的元素交换至右端。

思路:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。重复第一趟步骤,直至全部排序完成。

第一趟比较完成后,最后一个数一定是数组中最大的一个数,所以第二趟比较的时候最后一个数不参与比较;

第二趟比较完成后,倒数第二个数也一定是数组中第二大的数,所以第三趟比较的时候最后两个数不参与比较;

依次类推,每一趟比较次数-1;

??

举例说明:要排序数组:int[] arr={6,3,8,2,9,1}; 

for(int i=1;iarr.length;i++){

for(int j=1;jarr.length-i;j++){

//交换位置

}    

参考资料:冒泡排序原理


标题名称:java简单排序代码 java快速排序简单代码
本文地址:http://csdahua.cn/article/docojio.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流