python爬取常用函数 python爬取例子

Python字典中几个常用函数总结

1、get() 返回指定键的值,如果值不在字典中返回default值。

10余年的即墨网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整即墨建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“即墨网站设计”,“即墨网站推广”以来,每个客户项目都认真落实执行。

语法:dict.get(key,default=None)

参数:

key 字典中要查找的键。

default 如果指定键的值不存在时,返回该默认值值。

例:

dict={'Name':'alex','Age':21}

print("Name is:%s"% dict.get('Name')+"\n"+ "Age is:%d"% dict.get('Age'))

显示结果为:

Name is:alex

Age is:21

2、update() 将一个字典中的值更新到另一个字典中。

语法:dict.update(dict2)

参数:

dict2 添加到指定字典dict里的字典。

例:

dict={'Name':'alex','Age':21}

dict2={'Sex':'female'}

dict.update(dict2)

print("Value is %s" % dict)

显示结果为:

Value is {'Name': 'alex', 'Age': 21, 'Sex': 'female'}

python基础:内置函数、方法、转义字符大全

在写python程序时,常能用到一些函数和方法,总结一下,保存起来,方便查询。

一、内置函数

# abs()获取数字绝对值

# chr(i)数字转换为字符类型

# divmod() 获取两个数值的商和余数

# enumerate() 将可遍历序列组合为索引序列

# float()转换为浮点数

# format() 格式化字符串

# int()转换为整数 

# input() 接受用户输入内容

# len() 计算元素个数

# max() 返回最大值

# min() 返回最小值

# math.ceil() 返回指定数值的上舍整数

# open()打开文件并返回文件对象

# pow() 幂运算

# print()打印输出 

# range() 生成器

# reversed()反转所有元素

# round()四舍五入求值

# sorted()对可迭代对象进行排序 

# str() 转换为字符串

# sum() 求和

# set() 创建集合

# tuple() 将序列转换为元组

# zip()将可迭代对象打包成元组

二、方法

# append() 添加列表元素

# capitalize()首字母转换为大写 

# count()字符出现次数

# close() 关闭文件

# decode() 解码字符串

# dict.keys() 获取字典所有的键

# find()字符串首次出现的索引

# f.read() 读取文件内容

# dict.update()更新字典

# dict.items() 获取字典键/值对

# dict.get() 返回指定键的值

# encode() 编码字符串

# list.sort() 排序列表元素

# index() 元素首次出现的索引

# isdigit() 判断字符串是否只由数字组成

# isupper() 是否所有字母都为大写

# isnum() 判断字符串是否由字母和数字组成

# islower() 是否所有字母都为小写

# isdecimal() 检查字符串是否只包含十进制字符

# isalpha() 检测字符串是否为纯字母

# random.shuffle()随机排序

# random.sample()返回无重复随机数列表

# random.choice() 返回一个随机元素

# random.randint() 生成指定范围的随机整数

# random.randrange() 生成指定范围的指定递增基数随机整数

# pop() 删除列表中的元素

# remove()删除列表中的指定元素

# strip()去除空格

# lstrip()去除左侧空格

# rstrip() 去除右侧空格

# readline() 读取单行内容

# root.after() Tkinter中等待一段时间后再执行命令

# str.isnumeric() 验证字符串是否为数字(适用于Unicode)

# split()分割字符串

# ord() 将字符转换为整数

# replace() 字符串替换

# ljust() 左对齐填充

# rjust() 左对齐填充

# readlines() 读取所有行内容

# datetime.datetime.now() 返回指定时区的本地日期时间

# datetime.datetime.today() 获取当前本地日期的date对象

# datetime.utcnow() 返回当前UTC时间的datetime对象

# time.strptime()把时间字符串解析为元组

# time.time()返回当前时间的时间戳

# time.sleep()暂停指定秒数

# time.strftime() 返回指定格式的日期字符串

# time.mktime() 接收时间元组并返回时间戳

# os.getcwd() 获取当前工作目录

# os.listdir() 获取指定路径下的目录和文件列表

# os.makedirs() 递归创建目录

# os.rename() 重命名目录或文件

# os.path.exists() 判断路径是否存在

# upper() 全部转换为大写字母

# lower()  全部转换为小写字母

# sys.stdout.write() 标准输出打印

# sys.stdout.flush()刷新输出 

# shutil.copy() 复制单个文件到另一文件或目录

# write() 写入文件内容

# winsound.Beep() 打开电脑扬声器

# zfill() 在字符串前面填充0

三、循环语句

# break终止当前循环

# continue 终止本循环进入下一次循环

# with open() as file 以with语句打开文件(数据保存)

四、转义字符

\ 行尾续行符

\' 单引号 

\'' 双引号

\a 响铃

\e 转义

\n 换行

\t 横向制表符

\f 换页

\xyy 十六进制yy代表的字符

\\反斜杠符号

\b 退格

\000 空

\v 纵向制表符

\r 回车

\0yy 八进制yy代表的字符

\other 其他的字符以普通格式输出

python常用列表函数

1

len(list)

列表元素个数

2

max(list)

返回列表元素最大值

3

min(list)

返回列表元素最小值

4

list(seq)

将元组转换为列表

序号

方法

1

list.append(obj)

在列表末尾添加新的对象

2

list.count(obj)

统计某个元素在列表中出现的次数

3

list.extend(seq)

在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)

4

list.index(obj)

从列表中找出某个值第一个匹配项的索引位置

5

list.insert(index, obj)

将对象插入列表

6

list.pop([index=-1])

移除列表中的一个元素(默认最后一个元素),并且返回该元素的值

7

list.remove(obj)

移除列表中某个值的第一个匹配项

8

list.reverse()

反向列表中元素

9

list.sort( key=None, reverse=False)

对原列表进行排序

10

list.clear()

清空列表

11

list.copy()

复制列表

如何入门 Python 爬虫

现在之所以有这么多的小伙伴热衷于爬虫技术,无外乎是因为爬虫可以帮我们做很多事情,比如搜索引擎、采集数据、广告过滤等,以Python为例,Python爬虫可以用于数据分析,在数据抓取方面发挥巨大的作用。

但是这并不意味着单纯掌握一门Python语言,就对爬虫技术触类旁通,要学习的知识和规范还有喜很多,包括但不仅限于HTML 知识、HTTP/HTTPS 协议的基本知识、正则表达式、数据库知识,常用抓包工具的使用、爬虫框架的使用等。而且涉及到大规模爬虫,还需要了解分布式的概念、消息队列、常用的数据结构和算法、缓存,甚至还包括机器学习的应用,大规模的系统背后都是靠很多技术来支撑的。

零基础如何学爬虫技术?对于迷茫的初学者来说,爬虫技术起步学习阶段,最重要的就是明确学习路径,找准学习方法,唯有如此,在良好的学习习惯督促下,后期的系统学习才会事半功倍,游刃有余。

用Python写爬虫,首先需要会Python,把基础语法搞懂,知道怎么使用函数、类和常用的数据结构如list、dict中的常用方法就算基本入门。作为入门爬虫来说,需要了解 HTTP协议的基本原理,虽然 HTTP 规范用一本书都写不完,但深入的内容可以放以后慢慢去看,理论与实践相结合后期学习才会越来越轻松。关于爬虫学习的具体步骤,我大概罗列了以下几大部分,大家可以参考:

网络爬虫基础知识:

爬虫的定义

爬虫的作用

Http协议

基本抓包工具(Fiddler)使用

Python模块实现爬虫:

urllib3、requests、lxml、bs4 模块大体作用讲解

使用requests模块 get 方式获取静态页面数据

使用requests模块 post 方式获取静态页面数据

使用requests模块获取 ajax 动态页面数据

使用requests模块模拟登录网站

使用Tesseract进行验证码识别

Scrapy框架与Scrapy-Redis:

Scrapy 爬虫框架大体说明

Scrapy spider 类

Scrapy item 及 pipeline

Scrapy CrawlSpider 类

通过Scrapy-Redis 实现分布式爬虫

借助自动化测试工具和浏览器爬取数据:

Selenium + PhantomJS 说明及简单实例

Selenium + PhantomJS 实现网站登录

Selenium + PhantomJS 实现动态页面数据爬取

爬虫项目实战:

分布式爬虫+ Elasticsearch 打造搜索引擎

一文秒懂python正则表达式常用函数

01 Re概览

Re模块是python的内置模块,提供了正则表达式在python中的所有用法,默认安装位置在python根目录下的Lib文件夹(如 ..\Python\Python37\Lib)。主要提供了3大类字符串操作方法:

字符查找/匹配

字符替换

字符分割

由于是面向字符串类型的模块,就不得不提到字符串编码类型。re模块中,模式串和搜索串既可以是 Unicode 字符串 (常用str类型) ,也可以是8位字节串 (bytes,2位16进制数字,例如\xe5) , 但要求二者必须是同类型字符串。

02 字符串查找/匹配

预编译:compile

在介绍查找和匹配函数前,首先需要知道re的compile函数,该函数可以将一个模式串编译成正则表达式类型,以便后续快速匹配和复用

import re pattern = re.compile(r'[a-z]{2,5}') type(pattern) #re.Pattern

此例创建了一个正则表达式式对象 (re.pattern) ,命名为pattern,用于匹配2-5位小写字母的模式串。后续在使用其他正则表达式函数时,即可使用pattern进行方法调用。

匹配:match

match函数用于从文本串的起始位置开始匹配,若匹配成功,则返回相应的匹配对象,此时可调用group()方法返回匹配结果,也可用span()方法返回匹配起止下标区间;否则返回None

import re pattern = re.compile(r'[a-z]{2,5}') text1 = 'this is a re test' res = pattern.match(text1) print(res) # if res:  print(res.group()) #this  print(res.span()) #(0, 4) text2 = '是的, this is a re test' print(pattern.match(text2))#None

match函数还有一个变形函数fullmatch,当且仅当模式串与文本串刚好全部匹配时,返回一个匹配对象,否则返回None

搜索:search

match只提供了从文本串起始位置匹配的结果,如果想从任意位置匹配,则可调用search方法,与match方法类似,当任意位置匹配成功,则立即返回一个匹配对象,也可调用span()方法获取起止区间、调用group方法获得匹配文本串

import re pattern = re.compile(r'\s[a-z]{2}') text1 = 'this is a re test' res = pattern.search(text1) print(res) # if res:  print(res.group()) #is  print(res.span()) #(4, 7) pattern2 = re.compile(r'\s[a-z]{5}') text2 = '是的,this is a re test' print(pattern2.search(text2))#None

match和search均用于匹配单个结果,唯一区别在于前者是从起始位置开始匹配,而后者从任意位置匹配,匹配成功则返回一个match对象。

全搜索:findall/finditer

几乎是最常用的正则表达式函数,用于寻找所有匹配的结果,例如在爬虫信息提取中,可非常方便地提取所有匹配字段

import re pattern = re.compile(r'\s[a-z]{2,5}') text1 = 'this is a re test' res = pattern.findall(text1) print(res) #[' is', ' re', ' test']

findall返回的是一个列表对象类型,当无匹配对象时,返回一个空列表。为了避免因同时返回大量匹配结果占用过多内存,可以调用finditer函数返回一个迭代器类型,其中每个迭代元素是一个match对象,可继续调用group和span方法获取相应结果

import re pattern = re.compile(r'\s[a-z]{2,5}') text1 = 'this is a re test' res = pattern.finditer(text1) for r in res:  print(r.group()) """  is  re  test """

当匹配模式串较为简单或者仅需单词调用时,上述所有方法也可直接调用re类函数,而无需事先编译。此时各方法的第一个参数为模式串。

import re pattern = re.compile(r'\d{2,5}') text = 'this is re test' re.findall('[a-z]+', text) #['this', 'is', 're', 'test'] 03 字符串替换/分割

替换:sub/subn

当需要对文本串进行条件替换时,可调用re.sub实现 (当然也可先编译后再用调用实例方法) ,相应参数分别为模式串、替换格式、文本串,还可以通过增加缺省参数限定替换次数和匹配模式。通过在模式串进行分组,可实现字符串的格式化替换(类似字符串的format方法),以实现特定任务。

import re text = 'today is 2020-03-05' print(re.sub('-', '', text)) #'today is 20200305' print(re.sub('-', '', text, 1)) #'today is 202003-05' print(re.sub('(\d{4})-(\d{2})-(\d{2})', r'\2/\3/\1', text)) #'today is 03/05/2020'

re.sub的一个变形方法是re.subn,区别是返回一个2元素的元组,其中第一个元素为替换结果,第二个为替换次数

import re text = 'today is 2020-03-05' print(re.subn('-', '', text)) #('today is 20200305', 2)

分割:split

还可以调用正则表达式实现字符串的特定分割,相当于.split()方法的一个加强版,实现特定模式的分割,返回一个切割后的结果列表

import re text = 'today is a re test, what do you mind?' print(re.split(',', text)) #['today is a re test', ' what do you mind?'] 04 总结

python中的re模块提供了正则表达式的常用方法,每种方法都包括类方法调用(如re.match)或模式串的实例调用(pattern.match)2种形式

常用的匹配函数:match/fullmatch

常用的搜索函数:search/findall/finditer

常用的替换函数:sub/subn

常用的切割函数:split

还有其他很多方法,但不是很常用,具体可参考官方文档

另外,python还有第三方正则表达式库regex可供选择

到此这篇关于一文秒懂python正则表达式常用函数的文章就介绍到这了,希望大家以后多多支持!

Python的函数都有哪些

【常见的内置函数】

1、enumerate(iterable,start=0)

是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。

2、zip(*iterables,strict=False)

用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。

3、filter(function,iterable)

filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。

4、isinstance(object,classinfo)

是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,

返回True。如果object不是一个给定类型的的对象, 则返回结果总是False

5、eval(expression[,globals[,locals]])

用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。

【常用的句式】

1、format字符串格式化

format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。

2、连接字符串

常使用+连接两个字符串。

3、if...else条件语句

Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。

4、for...in、while循环语句

循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。

5、import导入其他脚本的功能

有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。


标题名称:python爬取常用函数 python爬取例子
文章链接:http://csdahua.cn/article/dodjjdc.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流