pythondt函数 python函数dir

在Python中 编写函数,参数是四位数的年份,输出是否是闰 年。通过程序调用该函?

!/usr/bin/pythonimport?datetimedt?=?datetime.datetime(2012,?3,?16)print?'%s'?%?dt.strftime('%j')简单写写,自己添加吧

超过十余年行业经验,技术领先,服务至上的经营模式,全靠网络和口碑获得客户,为自己降低成本,也就是为客户降低成本。到目前业务范围包括了:网站设计制作、网站设计,成都网站推广,成都网站优化,整体网络托管,重庆小程序开发公司,微信开发,成都App制作,同时也可以让客户的网站和网络营销和我们一样获得订单和生意!

python里面有哪些自带函数?

python系统提供了下面常用的函数:

1. 数学库模块(math)提供了很多数学运算函数;

2.复数模块(cmath)提供了用于复数运算的函数;

3.随机数模块(random)提供了用来生成随机数的函数;

4.时间(time)和日历(calendar)模块提供了能处理日期和时间的函数。

注意:在调用系统函数之前,先要使用import 语句导入 相应的模块

该语句将模块中定义的函数代码复制到自己的程 序中,然后就可以访问模块中的任何函数,其方 法是在函数名前面加上“模块名.”。

希望能帮到你。

怎么用python语句写出公式dt=b的平方-4ac

import

math

a,b,c

=

input("请输入3个数字(空格分隔):").split()

a

=

float(a)

b

=

float(b)

c

=

float(c)

d

=

(b**2)

-

(4*a*c)

if

a==0

and

b==0

and

c==0

:

print("有无穷个解")elif

d

=

0:

x1

=

(-b-d/(2*a))

x2

=

(-b+d/(2*a))

print('结果为:%.2f,%.2f'%(x1,x2));

else:

print("无解")

如何使用python计算常微分方程?

常用形式

odeint(func, y0, t,args,Dfun)

一般这种形式就够用了。

下面是官方的例子,求解的是

D(D(y1))-t*y1=0

为了方便,采取D=d/dt。如果我们令初值

y1(0) = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)

D(y1)(0) = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)

这个微分方程的解y1=airy(t)。

令D(y1)=y0,就有这个常微分方程组。

D(y0)=t*y1

D(y1)=y0

Python求解该微分方程。

from scipy.integrate import odeint

from scipy.special import gamma, airy

y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)

y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)

y0 = [y0_0, y1_0]

def func(y, t):

... return [t*y[1],y[0]]

def gradient(y,t):

... return [[0,t],[1,0]]

x = arange(0,4.0, 0.01)

t = x

ychk = airy(x)[0]

y = odeint(func, y0, t)

y2 = odeint(func, y0, t, Dfun=gradient)

print ychk[:36:6]

[ 0.355028 0.339511 0.324068 0.308763 0.293658 0.278806]

print y[:36:6,1]

[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

print y2[:36:6,1]

[ 0.355028 0.339511 0.324067 0.308763 0.293658 0.278806]

得到的解与精确值相比,误差相当小。

=======================================================================================================

args是额外的参数。

用法请参看下面的例子。这是一个洛仑兹曲线的求解,并且用matplotlib绘出空间曲线图。(来自《python科学计算》)

from scipy.integrate import odeint

import numpy as np

def lorenz(w, t, p, r, b):

# 给出位置矢量w,和三个参数p, r, b 计算出

# dx/dt, dy/dt, dz/dt 的值

x, y, z = w

# 直接与lorenz 的计算公式对应

return np.array([p*(y-x), x*(r-z)-y, x*y-b*z])

t = np.arange(0, 30, 0.01) # 创建时间点

# 调用ode 对lorenz 进行求解, 用两个不同的初始值

track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))

track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))

# 绘图

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

fig = plt.figure()

ax = Axes3D(fig)

ax.plot(track1[:,0], track1[:,1], track1[:,2])

ax.plot(track2[:,0], track2[:,1], track2[:,2])

plt.show()

===========================================================================

scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)

计算常微分方程(组)

使用 FORTRAN库odepack中的lsoda解常微分方程。这个函数一般求解初值问题。

参数:

func : callable(y, t0, ...) 计算y在t0 处的导数。

y0 : 数组 y的初值条件(可以是矢量)

t : 数组 为求出y,这是一个时间点的序列。初值点应该是这个序列的第一个元素。

args : 元组 func的额外参数

Dfun : callable(y, t0, ...) 函数的梯度(Jacobian)。即雅可比多项式。

col_deriv : boolean. True,Dfun定义列向导数(更快),否则Dfun会定义横排导数

full_output : boolean 可选输出,如果为True 则返回一个字典,作为第二输出。

printmessg : boolean 是否打印convergence 消息。

返回: y : array, shape (len(y0), len(t))

数组,包含y值,每一个对应于时间序列中的t。初值y0 在第一排。

infodict : 字典,只有full_output == True 时,才会返回。

字典包含额为的输出信息。

键值:

‘hu’ vector of step sizes successfully used for each time step.

‘tcur’ vector with the value of t reached for each time step. (will always be at least as large as the input times).

‘tolsf’ vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected.

‘tsw’ value of t at the time of the last method switch (given for each time step)

‘nst’ cumulative number of time steps

‘nfe’ cumulative number of function evaluations for each time step

‘nje’ cumulative number of jacobian evaluations for each time step

‘nqu’ a vector of method orders for each successful step.

‘imxer’index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise.

‘lenrw’ the length of the double work array required.

‘leniw’ the length of integer work array required.

‘mused’a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff)

其他参数,官方网站和文档都没有明确说明。相关的资料,暂时也找不到。


文章标题:pythondt函数 python函数dir
本文路径:http://csdahua.cn/article/doedsgj.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流