python求伽马函数 matlab伽马函数

伽马函数怎么求?

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11。

在蚌山等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计制作、成都网站制作 网站设计制作按需定制设计,公司网站建设,企业网站建设,高端网站设计,全网营销推广,成都外贸网站建设公司,蚌山网站建设费用合理。

表达式:

Γ(a)=∫{0积到无穷大}

[x^(a-1)]*[e^(-x)]dx

在Matlab中的应用

其表示N在N-1到0范围内的整数阶乘。

公式为:gamma(N)=(N-1)*(N-2)*...*2*1

例如:

gamma(6)=5*4*3*2*1

ans=120

伽玛(Gamma)函数怎么求?

Γ(2)伽玛函数公式:Γ(x)=积分:e^(-t)*t^(x-1)dt。

利用伽马函数γ(n)=(n-1)γ(n-1)=(n-1)!及γ(1/2)=√π,有γ(1/2+n)=γ[(n-1+1/2)+1]=[(2n-1)/2]γ(n-1/2)。

=[(2n-1)/2]][(2n-3)/2](1/2)γ(1/2)。

=[(2n-1)(2n-3)^(1)/2^n]γ(1/2)。

=[√π/2^n](2n-1)!!。“(2n-1)!!”表示自然数中连续奇数的连乘积。

Stirling公式

Gamma函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德、魏尔斯特拉斯、刘维尔等等。这个函数在现代数学分析中被深入研究,在概率论中也是无处不在,很多统计分布都和这个函数相关。

Gamma函数作为阶乘的推广,首先它也有和Stirling公式类似的一个结论:即当x取的数越大,Gamma函数就越趋向于Stirling公式,所以当x足够大时,可以用Stirling公式来计算Gamma函数值。

Python--math库

Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算,若需计算复数,可使用cmath模块(本文不赘述)。

使用dir函数,查看math库中包含的所有内容:

1) math.pi    # 圆周率π

2) math.e    #自然对数底数

3) math.inf    #正无穷大∞,-math.inf    #负无穷大-∞

4) math.nan    #非浮点数标记,NaN(not a number)

1) math.fabs(x)    #表示X值的绝对值

2) math.fmod(x,y)    #表示x/y的余数,结果为浮点数

3) math.fsum([x,y,z])    #对括号内每个元素求和,其值为浮点数

4) math.ceil(x)    #向上取整,返回不小于x的最小整数

5)math.floor(x)    #向下取整,返回不大于x的最大整数

6) math.factorial(x)    #表示X的阶乘,其中X值必须为整型,否则报错

7) math.gcd(a,b)    #表示a,b的最大公约数

8)  math.frexp(x)      #x = i *2^j,返回(i,j)

9) math.ldexp(x,i)    #返回x*2^i的运算值,为math.frexp(x)函数的反运算

10) math.modf(x)    #表示x的小数和整数部分

11) math.trunc(x)    #表示x值的整数部分

12) math.copysign(x,y)    #表示用数值y的正负号,替换x值的正负号

13) math.isclose(a,b,rel_tol =x,abs_tol = y)    #表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a,b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用,abs_tol必须至少为0。

14) math.isfinite(x)    #表示当x不为无穷大时,返回True,否则返回False

15) math.isinf(x)    #当x为±∞时,返回True,否则返回False

16) math.isnan(x)    #当x是NaN,返回True,否则返回False

1) math.pow(x,y)    #表示x的y次幂

2) math.exp(x)    #表示e的x次幂

3) math.expm1(x)    #表示e的x次幂减1

4) math.sqrt(x)    #表示x的平方根

5) math.log(x,base)    #表示x的对数值,仅输入x值时,表示ln(x)函数

6) math.log1p(x)    #表示1+x的自然对数值

7) math.log2(x)    #表示以2为底的x对数值

8) math.log10(x)    #表示以10为底的x的对数值

1) math.degrees(x)    #表示弧度值转角度值

2) math.radians(x)    #表示角度值转弧度值

3) math.hypot(x,y)    #表示(x,y)坐标到原点(0,0)的距离

4) math.sin(x)    #表示x的正弦函数值

5) math.cos(x)    #表示x的余弦函数值

6) math.tan(x)    #表示x的正切函数值

7)math.asin(x)    #表示x的反正弦函数值

8) math.acos(x)    #表示x的反余弦函数值

9) math.atan(x)    #表示x的反正切函数值

10) math.atan2(y,x)    #表示y/x的反正切函数值

11) math.sinh(x)    #表示x的双曲正弦函数值

12) math.cosh(x)    #表示x的双曲余弦函数值

13) math.tanh(x)    #表示x的双曲正切函数值

14) math.asinh(x)    #表示x的反双曲正弦函数值

15) math.acosh(x)    #表示x的反双曲余弦函数值

16) math.atanh(x)    #表示x的反双曲正切函数值

1)math.erf(x)    #高斯误差函数

2) math.erfc(x)    #余补高斯误差函数

3) math.gamma(x)    #伽马函数(欧拉第二积分函数)

4) math.lgamma(x)    #伽马函数的自然对数

python3的sympy

print(“字符串”),5/2和5//2的结果是不同的5/2为2.5,5//2为2.

python2需要导入from_future_import division执行普通的除法。

1/2和1//2的结果0.5和0.

%号为取模运算。

乘方运算为2**3,-2**3和-(2**3)是等价的。

from sympy import*导入库

x,y,z=symbols('x y z'),定义变量

init_printing(use_unicode=True)设置打印方式。

python的内部常量有pi,

函数simplify,simplify(sin(x)**2 + cos(x)**2)化简结果为1,

simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化简结果为x-1。化简伽马函数。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1)。

expand((x + 1)**2)展开多项式。

expand((x + 1)*(x - 2) - (x - 1)*x)

因式分解。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2

from_future_import division

x,y,z,t=symbols('x y z t')定义变量,

k, m, n = symbols('k m n', integer=True)定义三个整数变量。

f, g, h = symbols('f g h', cls=Function)定义的类型为函数。

factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一个列表,表示因式的幂,(1, [(z, 1), (x + 2*y, 2)])

expand((cos(x) + sin(x))**2)展开多项式。

expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3,collected_expr = collect(expr, x)将x合并。将x元素按阶次整合。

collected_expr.coeff(x, 2)直接取出变量collected_expr的x的二次幂的系数。

cancel()is more efficient thanfactor().

cancel((x**2 + 2*x + 1)/(x**2 + x))

,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)

expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)

asin(1)

trigsimp(sin(x)**2 + cos(x)**2)三角函数表达式化简,

trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)

trigsimp(sin(x)*tan(x)/sec(x))

trigsimp(cosh(x)**2 + sinh(x)**2)双曲函数。

三角函数展开,expand_trig(sin(x + y)),acos(x),cos(acos(x)),expand_trig(tan(2*x))

x, y = symbols('x y', positive=True)正数,a, b = symbols('a b', real=True)实数,z, t, c = symbols('z t c')定义变量的方法。

sqrt(x) == x**Rational(1, 2)判断是否相等。

powsimp(x**a*x**b)幂函数的乘法,不同幂的乘法,必须先定义a和b。powsimp(x**a*y**a)相同幂的乘法。

powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.

powsimp(t**c*z**c, force=True)这样的话就可以得到化简过的式子。声明强制进行化简。

(z*t)**2,sqrt(x*y)

第一个展开expand_power_exp(x**(a + b)),expand_power_base((x*y)**a)展开,

expand_power_base((z*t)**c, force=True)强制展开。

powdenest((x**a)**b),powdenest((z**a)**b),powdenest((z**a)**b, force=True)

ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),

expand_log(log(x*y))展开为log(x) + log(y),但是python3没有。这是因为需要将x定义为positive。这是必须的,否则不会被展开。expand_log(log(x/y)),expand_log(log(x**n))

As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions。

expand_log(log(z**2), force=True),强制展开。

logcombine(log(x) + log(y)),logcombine(n*log(x)),logcombine(n*log(z), force=True)。

factorial(n)阶乘,binomial(n, k)等于c(n,k),gamma(z)伽马函数。

hyper([1, 2], [3], z),

tan(x).rewrite(sin)得到用正弦表示的正切。factorial(x).rewrite(gamma)用伽马函数重写阶乘。

expand_func(gamma(x + 3))得到,x*(x + 1)*(x + 2)*gamma(x),

hyperexpand(hyper([1, 1], [2], z)),

combsimp(factorial(n)/factorial(n - 3))化简,combsimp(binomial(n+1, k+1)/binomial(n, k))化简。combsimp(gamma(x)*gamma(1 - x))

自定义函数

def list_to_frac(l):

expr = Integer(0)

for i in reversed(l[1:]):

expr += i

expr = 1/expr

return l[0] + expr

list_to_frac([x, y, z])结果为x + 1/z,这个结果是错误的。

syms = symbols('a0:5'),定义syms,得到的结果为(a0, a1, a2, a3, a4)。

这样也可以a0, a1, a2, a3, a4 = syms, 可能是我的操作错误 。发现python和自动缩进有关,所以一定看好自动缩进的距离。list_to_frac([1, 2, 3, 4])结果为43/30。

使用cancel可以将生成的分式化简,frac = cancel(frac)化简为一个分数线的分式。

(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)

a0, a1, a2, a3, a4 = syms定义a0到a4,frac = apart(frac, a0)可将a0提出来。frac=1/(frac-a0)将a0去掉取倒。frac = apart(frac, a1)提出a1。

help("modules"),模块的含义,help("modules yourstr")模块中包含的字符串的意思。,

help("topics"),import os.path + help("os.path"),help("list"),help("open")

# -*- coding: UTF-8 -*-声明之后就可以在ide中使用中文注释。

定义

l = list(symbols('a0:5'))定义列表得到[a0, a1, a2, a3, a4]

fromsympyimport*

x,y,z=symbols('x y z')

init_printing(use_unicode=True)

diff(cos(x),x)求导。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等价。

diff(expr, x, y, 2, z, 4)求出表达式的y的2阶,z的4阶,x的1阶导数。和diff(expr, x, y, y, z, 4)等价。expr.diff(x, y, y, z, 4)一步到位。deriv = Derivative(expr, x, y, y, z, 4)求偏导。但是不显示。之后用deriv.doit()即可显示

integrate(cos(x), x)积分。定积分integrate(exp(-x), (x, 0, oo))无穷大用2个oo表示。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重积分。print(expr)print的使用。

expr = Integral(log(x)**2, x),expr.doit()积分得到x*log(x)**2 - 2*x*log(x) + 2*x。

integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -

exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)连用。

limit(sin(x)/x,x,0),not-a-number表示nan算不出来,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()连用。左右极限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-')。。

Series Expansion级数展开。expr = exp(sin(x)),expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()将无穷小移除。exp(x-6).series(x,x0=6),,得到

-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5阶。

f=Function('f')定义函数变量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2阶,,as_finite_diff(dfdx)函数和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0)。

Eq(x, y),,solveset(Eq(x**2, 1), x)解出来x,当二式相等。和solveset(Eq(x**2 - 1, 0), x)等价。solveset(x**2 - 1, x)

solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出来定义域。solveset(exp(x), x)    # No solution exists解出EmptySet()表示空集。

等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩阵法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}

A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**2 + 9*x, x)解多项式。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1},有2个3的重根,1个0根。solve([x*y - 1, x - 2], x, y)解出坐标。

f, g = symbols('f g', cls=Function)函数的定义,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))结合。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出来Eq(f(x) + cos(f(x)), C1),,

Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示。M=Matrix([[1,2,3],[3,2,1]])

N=Matrix([0,1,1])

M*N符合矩阵的乘法。M.shape显示矩阵的行列数。

M.row(0)获取M的第0行。M.col(-1)获取倒数第一列。

M.col_del(0)删掉第1列。M.row_del(1)删除第二行,序列是从0开始的。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列。

M+N矩阵相加,M*N,3*M,M**2,M**-1,N**-1表示求逆。M.T求转置。

eye(3)单位。zeros(2, 3),0矩阵,ones(3, 2)全1,diag(1, 2, 3)对角矩阵。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([

[-1, 0, 0, 0],

[ 0, 1, 1, 0],

[ 0, 1, 1, 0],

[ 0, 0, 0, 5],

[ 0, 0, 0, 7],

[ 0, 0, 0, 5]])矩阵。

Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])

一行一行显示,,M.det()求行列式。M.rref()矩阵化简。得到结果为Matrix([

[1, 0,  1,  3],

[0, 1, 2/3, 1/3],

[0, 0,  0,  0]]), [0, 1])。

M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]),M.nullspace()

Columnspace

M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])

M = Matrix([[3, -2,  4, -2], [5,  3, -3, -2], [5, -2,  2, -2], [5, -2, -3,  3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2},,This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.

P, D = M.diagonalize(),P得Matrix([

[0, 1, 1,  0],

[1, 1, 1, -1],

[1, 1, 1,  0],

[1, 1, 0,  1]]),,D为Matrix([

[-2, 0, 0, 0],

[ 0, 3, 0, 0],

[ 0, 0, 5, 0],

[ 0, 0, 0, 5]])

P*D*P**-1 == M返回为True。lamda = symbols('lamda')。

lamda = symbols('lamda')定义变量,p = M.charpoly(lamda)和factor(p)

expr = x**2 + x*y,srepr(expr)可以将表达式说明计算法则,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"。。

x = symbols('x')和x = Symbol('x')是一样的。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))"。Pow(x, 2)和Mul(x, y)得到x**2。x*y

type(2)得到class 'int',type(sympify(2))得到class 'sympy.core.numbers.Integer'..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))"。。。

Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"。。Pow函数为幂次。

expr = Add(x, x),expr.func。。Integer(2).func,class 'sympy.core.numbers.Integer',,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到class 'sympy.core.mul.Mul',,expr.args将表达式分解为得到(3, x, y**2),,expr.func(*expr.args)合并。expr == expr.func(*expr.args)返回True。expr.args[2]得到y**2,expr.args[1]得到x,expr.args[0]得到3.。

expr.args[2].args得到(y, 2)。。y.args得到空括号。Integer(2).args得到空括号。

from sympy import *

E**(I*pi)+1,可以看出,I和E,pi已将在sympy内已定义。

x=Symbol('x'),,expand( E**(I*x) )不能展开,expand(exp(I*x),complex=True)可以展开,得到I*exp(-im(x))*sin(re(x)) + exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)将x定义为实数。再展开expand(exp(I*x),complex=True)得到。I*sin(x) + cos(x)。。

tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)打印出来可读性好,print(tmp)可读性不好。。pprint将公式用更好看的格式打印出来,,pprint( series( cos(x), x, 0, 10) )

integrate(x*sin(x), x),,定积分integrate(x*sin(x), (x, 0, 2*pi))。。

用双重积分求解球的体积。

x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))计算球的体积。计算不来,是因为sympy不知道r是大于0的。r = symbols('r', positive=True)这样定义r即可。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到。circle_area=circle_area.subs(r,sqrt(r**2-x**2))将r替换。

integrate(circle_area,(x,-r,r))再积分即可。

expression.sub([(x,y),(y,x)])又换到原来的状况了。

expression.subs(x, y),,将算式中的x替换成y。。

expression.subs({x:y,u:v}) : 使用字典进行多次替换。。

expression.subs([(x,y),(u,v)]) : 使用列表进行多次替换。。


当前文章:python求伽马函数 matlab伽马函数
网页路径:http://csdahua.cn/article/dogeogs.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流