扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
public class Arr{
创新互联成立与2013年,是专业互联网技术服务公司,拥有项目成都做网站、成都网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元老河口做网站,已为上家服务,为老河口各地企业和个人服务,联系电话:18980820575
//数组
int[] arr = {3,1,6,4,5,10,2};
//对数组进行简单的排序
java.util.Arrays.sort(arr);
//输出最大值、最小值
System.out.println("最大值:" + arr[arr.length-1] +"\n最小值:" + arr[0]);
//从小到大输出
System.out.println(java.util.Arrays.toString(arr));
}
额。。程序最后多打了一个大括号
这段代码的功能是对一个有向图进行拓扑排序,若有环则抛出异常
首先要明白拓扑排序是做什么的,详见百度百科--拓扑排序(有图有样例)
然后说这段代码:
通过将图中入度为0的点存入队列,用队首的点去查找与此点连接且入度为1的点,
把找到的点在存入队列,令这队首的点出队。如此至到找不到入度为0的点,结束while
循环,最后再判断进入再离开队列的点的个数若小于图中总点数,则判定有环。
注:可以根据注释判断函数功能
void Graph::topsort()
{
QueueVertex q;//定义存储点的信息的队列,由于是伪代码,信息类型不详,一般是该点在题目中的编号
int counter=0;//记录当前有几个点已经出队了
q.makeEmpty();//初始化队列,令其清空
for each Vertex v //初始化查找入度为0的点,若找到则入队
if(v.indegree==0) //判断入度为0
q.enqueue(v); //入队
while(!q.isEmpty()) //若队列不为空则一直循环
{
Vertex v=q.dequeue(); //队首点出队
v.topNum=++counter; //累加出队点数
for each Vertex w adjacent to v //用此出队点,即刚才的队首,查找仅与其相连的点,并将找到的点入队
if(--w.indegree==0)
q.enqueue(w);
}
if(counter!=NUM_VERTICES) //若总出队点不等于图中总点数,则有环
throw CycleFoudException();
}
信息工程系软件技术学生课程表(拓扑排序)
拓扑图为:(图不好粘贴)
运用拓扑概念排序的结果:
C1 , C9 , C3 , C2 , C7 , C4, C5 , C8 , C6
C1计算机应用基础 C2 C语言 C3 VB语言 C4 JSP C5数字逻辑电路 C6软件工程
C7计算机网络基础 C8 Java语言 C9计算机数学基础
/*-------------------------------主类-----------------------------*/
public class Navy1 {
public static void main(String[] args) {
topology(); //调用拓扑的构造方法
}
public static void topology() { //构造拓扑方法
/**
声明拓扑图中的元素
定义节点和节点之间的关系
Entry(a,b)a为b的前导
**/
Entry[] relations = { new Entry(9, 2), new Entry(3,7),
new Entry(7, 5), new Entry(5, 8), new Entry(8, 6),
new Entry(4, 6), new Entry(1, 3), new Entry(7, 4),
new Entry(9, 5), new Entry(2, 8) };
int n = 9;
int n1 = 9;
/*计算拓扑图中节点数*/
int[] count = { -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
/*开辟内存空间*/
Node[] top = { null, null, null, null, null, null, null, null, null, null };
Node p = null;
for (int i = 0; i relations.length; i++) {
count[relations[i].k]++;
p = new Node();
p.suc = relations[i].k;
p.next = top[relations[i].j];
top[relations[i].j] = p;
}
int r = 0;
int[] qlink = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
for (int i = 1; i = n; i++) {
if (count[i] == 0) {
qlink[r] = i;
r = i;
}
}
int f = qlink[0];
System.out.println("题目及要求:");
System.out.println("课程排课程序。写一个程序,实现对某个专业的课程进行排课的功能。");
System.out.println("已知某专业的课程和它们的前导和后续关系(以有向图的形式表示),");
System.out.println("请用拓扑排序算法求出这些课程的优先关系并输出一种排课结果");
System.out.println("--------------------------------------");
System.out.println("08信息工程系软件技术课程表(拓扑排序)");
while (true)
{
System.out.println(f);
if (f == 0) //结束条件
{
break;
}
else
{
n1--;
p = top[f];
while (true)
{
if (p == null)
{
break;
}
else
{
count[p.suc]--;
if (count[p.suc] == 0)
{
qlink[r] = p.suc;
r = p.suc;
}
p = p.next;
}
}
f = qlink[f];
}
}
System.out.println("结束的标志为:" + n1);
System.out.println("--------------------------------------------");
System.out.println("注释(数字对应的课程):");
System.out.println("1 计算机应用基础 2 C语言 3 VB语言 ");
System.out.println("4 JSP 5 数字逻辑电路 6 软件工程");
System.out.println("7 计算机网络基础 8 Java语言 9 计算机数学基础");
System.out.println("--------------------------------------------");
}
/*构造元素类*/
private static class Entry
{
public Entry(int begin, int end) //定义开始元素和结束元素
{
this.j = begin;
this.k = end;
}
int j;
int k;
}
/*声明节点的后继*/
private static class Node
{
public Node(int suc, Node next)
{
this.suc = suc;
this.next = next;
}
public Node()
{
}
int suc;
Node next;
}
}
排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。
主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序
一、冒泡(Bubble)排序
----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;in;i++)
{
for(int j=0;in-i;j++)
{
if(a[j]a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。
二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;in-1;i++)
{
min_index=i;
for(int j=i+1;jn;j++)//每次扫描选择最小项
if(arr[j]arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。
三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;in;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j=0 arr[j]temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。
四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;in;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j=0arr[j]temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。
五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i=mid j=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;zhigh-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low high arr[high] = pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low high arr [low ]=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。
七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kjtemp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。
堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;iG.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;iG.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (countG.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流