go语言内存问题 go语言gc

内存对齐问题

1.平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能

我们提供的服务有:网站制作、网站建设、微信公众号开发、网站优化、网站认证、博白ssl等。为上千余家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的博白网站制作公司

在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2.性能原因: 数据结构应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。(如果是对齐的,那么CPU不需要跨越两个操作字,不是对齐的则需要访问两个操作字才能拼接出需要的内存地址)

指针的大小一般是一个机器字的大小

通过Go语言的structlayout工具,可以得出下图

这些类型在之前的 slice 、 map 、 interface 已经介绍过了,也特意强调过,makehmap函数返回的是一个指针,因此map的对齐为一个机器字.

回头看看 sync.pool的防止copy的空结构体字段,也是放在第一位,破案了。

计算机结构可能会要求内存地址 进行对齐;也就是说,一个变量的地址是一个因子的倍数,也就是该变量的类型是对齐值。

函数Alignof接受一个表示任何类型变量的表达式作为参数,并以字节为单位返回变量(类型)的对齐值。对于变量x:

这是因为int64在bool之后未对齐。

它是32位对齐的,但不是64位对齐的,因为我们使用的是32位系统,因此实际上只是两个32位值并排在一起。

● 内存对齐是为了cpu更高效访问内存中数据

● 结构体对齐依赖类型的大小保证和对齐保证

● 地址对齐保证是:如果类型 t 的对齐保证是 n,那么类型 t 的每个值的地址在运行时必须是 n 的倍数。

● struct内字段如果填充过多,可以尝试重排,使字段排列更紧密,减少内存浪费

● 零大小字段要避免作为struct最后一个字段,会有内存浪费

● 32位系统上对64位字的原子访问要保证其是8bytes对齐的;当然如果不必要的 话,还是用加锁(mutex)的方式更清晰简单

图解go-内存对齐

doc-pdf

Go语言中恰到好处的内存对齐

在开始之前,希望你计算一下 Part1 共占用的大小是多少呢?

输出结果:

这么一算, Part1 这一个结构体的占用内存大小为 1+4+1+8+1 = 15 个字节。相信有的小伙伴是这么算的,看上去也没什么毛病

真实情况是怎么样的呢?我们实际调用看看,如下:

输出结果:

最终输出为占用 32 个字节。这与前面所预期的结果完全不一样。这充分地说明了先前的计算方式是错误的。为什么呢?

在这里要提到 “内存对齐” 这一概念,才能够用正确的姿势去计算,接下来我们详细的讲讲它是什么

有的小伙伴可能会认为内存读取,就是一个简单的字节数组摆放

上图表示一个坑一个萝卜的内存读取方式。但实际上 CPU 并不会以一个一个字节去读取和写入内存。相反 CPU 读取内存是 一块一块读取 的,块的大小可以为 2、4、6、8、16 字节等大小。块大小我们称其为 内存访问粒度 。如下图:

在样例中,假设访问粒度为 4。 CPU 是以每 4 个字节大小的访问粒度去读取和写入内存的。这才是正确的姿势

另外作为一个工程师,你也很有必要学习这块知识点哦 :)

在上图中,假设从 Index 1 开始读取,将会出现很崩溃的问题。因为它的内存访问边界是不对齐的。因此 CPU 会做一些额外的处理工作。如下:

从上述流程可得出,不做 “内存对齐” 是一件有点 "麻烦" 的事。因为它会增加许多耗费时间的动作

而假设做了内存对齐,从 Index 0 开始读取 4 个字节,只需要读取一次,也不需要额外的运算。这显然高效很多,是标准的 空间换时间 做法

在不同平台上的编译器都有自己默认的 “对齐系数”,可通过预编译命令 #pragma pack(n) 进行变更,n 就是代指 “对齐系数”。一般来讲,我们常用的平台的系数如下:

另外要注意,不同硬件平台占用的大小和对齐值都可能是不一样的。因此本文的值不是唯一的,调试的时候需按本机的实际情况考虑

输出结果:

在 Go 中可以调用 unsafe.Alignof 来返回相应类型的对齐系数。通过观察输出结果,可得知基本都是 2^n ,最大也不会超过 8。这是因为我手提(64 位)编译器默认对齐系数是 8,因此最大值不会超过这个数

在上小节中,提到了结构体中的成员变量要做字节对齐。那么想当然身为最终结果的结构体,也是需要做字节对齐的

接下来我们一起分析一下,“它” 到底经历了些什么,影响了 “预期” 结果

在每个成员变量进行对齐后,根据规则 2,整个结构体本身也要进行字节对齐,因为可发现它可能并不是 2^n ,不是偶数倍。显然不符合对齐的规则

根据规则 2,可得出对齐值为 8。现在的偏移量为 25,不是 8 的整倍数。因此确定偏移量为 32。对结构体进行对齐

Part1 内存布局:axxx|bbbb|cxxx|xxxx|dddd|dddd|exxx|xxxx

通过本节的分析,可得知先前的 “推算” 为什么错误?

是因为实际内存管理并非 “一个萝卜一个坑” 的思想。而是一块一块。通过空间换时间(效率)的思想来完成这块读取、写入。另外也需要兼顾不同平台的内存操作情况

在上一小节,可得知根据成员变量的类型不同,其结构体的内存会产生对齐等动作。那假设字段顺序不同,会不会有什么变化呢?我们一起来试试吧 :-)

输出结果:

通过结果可以惊喜的发现,只是 “简单” 对成员变量的字段顺序进行改变,就改变了结构体占用大小

接下来我们一起剖析一下 Part2 ,看看它的内部到底和上一位之间有什么区别,才导致了这样的结果?

符合规则 2,不需要额外对齐

Part2 内存布局:ecax|bbbb|dddd|dddd

通过对比 Part1 和 Part2 的内存布局,你会发现两者有很大的不同。如下:

仔细一看, Part1 存在许多 Padding。显然它占据了不少空间,那么 Padding 是怎么出现的呢?

通过本文的介绍,可得知是由于不同类型导致需要进行字节对齐,以此保证内存的访问边界

那么也不难理解,为什么 调整结构体内成员变量的字段顺序 就能达到缩小结构体占用大小的疑问了,是因为巧妙地减少了 Padding 的存在。让它们更 “紧凑” 了。这一点对于加深 Go 的内存布局印象和大对象的优化非常有帮

go语言的出现非常奇怪,有几个问题请高手答案一下~~~~??

1:go与c语言相比,go有垃圾回收,不会造成内存泄露问题,go的语法简洁优美,同样的c++100行代码go大概50行可以做到,go的目标是能做C++能做的事,虽然目前可能不太实际

2:go的并行机制并不是一般的线程,通过channel和goroutine来实现,比线程还要轻量级很多,所以go适合高并发的服务器端

3:go是系统级别的语言,相当于c语言,java c#都是算比较高级的语言,这个不太好比,效率的话目前确实是要高一些,而且不需要外部依赖,所以go还是很强大的

【golang】内存逃逸常见情况和避免方式

因为如果变量的内存发生逃逸,它的生命周期就是不可知的,其会被分配到堆上,而堆上分配内存不能像栈一样会自动释放,为了解放程序员双手,专注于业务的实现,go实现了gc垃圾回收机制,但gc会影响程序运行性能,所以要尽量减少程序的gc操作。

1、在方法内把局部变量指针返回,被外部引用,其生命周期大于栈,则溢出。

2、发送指针或带有指针的值到channel,因为编译时候无法知道那个goroutine会在channel接受数据,编译器无法知道什么时候释放。

3、在一个切片上存储指针或带指针的值。比如[]*string,导致切片内容逃逸,其引用值一直在堆上。

4、因为切片的append导致超出容量,切片重新分配地址,切片背后的存储基于运行时的数据进行扩充,就会在堆上分配。

5、在interface类型上调用方法,在Interface调用方法是动态调度的,只有在运行时才知道。

1、go语言的接口类型方法调用是动态,因此不能在编译阶段确定,所有类型结构转换成接口的过程会涉及到内存逃逸发生,在频次访问较高的函数尽量调用接口。

2、不要盲目使用变量指针作为参数,虽然减少了复制,但变量逃逸的开销更大。

3、预先设定好slice长度,避免频繁超出容量,重新分配。


文章标题:go语言内存问题 go语言gc
文章地址:http://csdahua.cn/article/doscdij.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流