opencv实现简单人脸识别-创新互联

对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别

成都网站制作、做网站介绍好的网站是理念、设计和技术的结合。创新互联建站拥有的网站设计理念、多方位的设计风格、经验丰富的设计团队。提供PC端+手机端网站建设,用营销思维进行网站设计、采用先进技术开源代码、注重用户体验与SEO基础,将技术与创意整合到网站之中,以契合客户的方式做到创意性的视觉化效果。

参考了网上许多资料 

假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置。

项目代码结构:

opencv实现简单人脸识别

dataSet : 存储训练用的图片,他由data_gen生成,当然也可以修改代码由其他方式生成

haarcascade_frontalface_alt.xml  、 haarcascade_frontalface_default.xml: 用于人脸检测的haar分类器,网上普遍说第一个效果更好,第二个运行速度更快

data_gen.py:生成我们所需的数据

trainer.py: 训练数据集

train.yml: 由train.py生成的人脸识别模型,供后面的人脸识别使用

recognize.py:视频中的人脸识别

data_gen.py

连续拍20张照片当作训练数据,每个人建立一组数据

import cv2
 
detector = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
cap = cv2.VideoCapture(0)
sampleNum = 0
Id = input('enter your id: ')
 
while True:
 ret, img = cap.read()
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 faces = detector.detectMultiScale(gray, 1.3, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
 
 # incrementing sample number
 sampleNum = sampleNum + 1
 # saving the captured face in the dataset folder
 cv2.imwrite("dataSet/User." + str(Id) + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) #
 
 cv2.imshow('frame', img)
 # wait for 100 miliseconds
 if cv2.waitKey(100) & 0xFF == ord('q'):
 break
 # break if the sample number is morethan 20
 elif sampleNum > 20:
 break
 
cap.release()
cv2.destroyAllWindows()

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站名称:opencv实现简单人脸识别-创新互联
本文链接:http://csdahua.cn/article/dpcopj.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流