怎么在Django中利用haystack和whoosh实现一个搜索功能-创新互联

这期内容当中小编将会给大家带来有关怎么在Django中利用haystack和whoosh实现一个搜索功能,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

成都创新互联公司基于成都重庆香港及美国等地区分布式IDC机房数据中心构建的电信大带宽,联通大带宽,移动大带宽,多线BGP大带宽租用,是为众多客户提供专业服务器托管报价,主机托管价格性价比高,为金融证券行业大邑服务器托管,ai人工智能服务器托管提供bgp线路100M独享,G口带宽及机柜租用的专业成都idc公司。

安装和配置

安装所需包

pip install django-haystack
pip install whoosh
pip install jieba

去settings文件注册haystack应用

INSTALLED_APPS = [
 'haystack', # 注册全文检索框架
]

在settings文件中配置全文检索框架

# 全文检索框架的配置
HAYSTACK_CONNECTIONS = {
 'default': {
  # 使用whoosh引擎
  'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine',
  # 索引文件路径
  'PATH': os.path.join(BASE_DIR, 'whoosh_index'),
 }
}

# 当添加、修改、删除数据时,自动生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'

索引文件的生成

要生成索引文件,首先你要配置,对哪些内容进行索引,比如商品名称,简介和详情;为了配置对数据库指定内容进行索引,我们要做如下步骤:

配置search_indexes.py文件

因为在django中数据库一般都是通过ORM生成的,首先我们在要在数据表对应的应用中创建一个 search_indexes.py 文件,例如,我现在要检索商品对应的表就是GoodsSKU表,而表是在goods应用下的,所以我在goods应用下新建 search_indexes.py 文件,截图如下:

怎么在Django中利用haystack和whoosh实现一个搜索功能

在 search_indexes.py 文件中加入以下内容

# 定义索引类
from haystack import indexes
# 导入你的模型类
from goods.models import GoodsSKU
# 指定对于某个类的某些数据建立索引
# 索引类名格式:模型类名+Index
class GoodsSKUIndex(indexes.SearchIndex, indexes.Indexable):
 # 索引字段 use_template=True指定根据表中的哪些字段建立索引文件的说明放在一个文件中
 text = indexes.CharField(document=True, use_template=True)
 def get_model(self):
  # 返回你的模型类
  return GoodsSKU
 # 建立索引的数据
 def index_queryset(self, using=None):
  return self.get_model().objects.all()

指定要检索的内容

在templates文件夹下面新建search文件夹,在search文件夹下面新建indexes文件夹,在indexes文件夹下面新建要检索应用名的文件夹比如goods文件夹,在goods文件夹下面新建 表名_text.txt,表名小写,所以目前的目录结构是这样的 templates/search/indexes/goods/goodssku_text.txt ,截图如下:

怎么在Django中利用haystack和whoosh实现一个搜索功能

在goodssku_text.txt 文件中指定你要根据表中的哪些字段建立索引数据,现在我们要根据商品的名称,简介,详情来建立索引,如下配置

# 指定根据表中的哪些字段建立索引数据
{{ object.name }} # 根据商品的名称建立索引
{{ object.desc }} # 根据商品的简介建立索引
{{ object.goods.detail }} # 根据商品的详情建立索引

其中的objects可以理解为数据表对应的商品对象。

生成索引文件

使用pycharm自带的命令行terminal运行以下命令生成索引文件:

python manage.py rebuild_index

运行成功后,你可以在项目下看到类似如下索引文件

怎么在Django中利用haystack和whoosh实现一个搜索功能

使用全文检索

通过如上的配置,我们的数据索引已经建立了,现在我们要在项目中使用全文检索。

在需要使用检索的地方进行 form 表单改造


 
 

如上所示,其中要注意的是:

发送方式必须使用get;

搜索的input框 name 必须是 q;

配置检索对应的url

在项目下的urls.py文件中添加如下url配置

urlpatterns = [
 url(r'^search/', include('haystack.urls')), # 全文检索框架
]

检索成功后生成的参数

当haystack自动检索成功后,会给我们返回三个参数;

query参数,表示你查询的参数;

page参数,当前页的Page对象,是查询到的对象的集合,可以通过for循环类获取单个商品,通过 商品.objects.xxx 获取商品对应的字段;

paginator参数,分页paginator对象。

可以通过如下代码测试参数




 
 Title

搜索的关键字:{{ query }}
当前页的Page对象:{{ page }}
     {% for item in page %}   
  • {{ item.object }}
  •  {% endfor %}
分页paginator对象:{{ paginator }}

templates/indexes/search.html

注意,位置和文件名都是固定的,并且这只是测试文件,后面使用全文检索时记得不能使用search.html,改成其他名字。

数据+search.html返回渲染后页面

当haystack全文检索后会返回数据,现在我们需要一个页面来接收这些数据,并且在页面渲染后返回这个页面给用户观看,渲染并返回页面的工作haystack已经帮我们做了,那么我们现在只需要准备一个页面容纳数据即可。

在templates文件夹下的indexes文件夹下新建一个search.html,注意路径和文件名是固定的,如下图

怎么在Django中利用haystack和whoosh实现一个搜索功能

利用检索返回的参数在search.html中定义要渲染出的模板和样式,我的页面如下


 {{ query }}
 >
 搜索结果如下:
    {% for item in page %}   
  •        
    {{ item.object.name }}
            ¥{{ item.object.price }}     {{ item.object.price}}/{{ item.object.unite }}         
  •      {% endfor %}        {% if page.has_previous %}    <上一页    {% endif %}    {% for pindex in paginator.page_range %}     {% if pindex == page.number %}      {{ pindex }}     {% else %}      {{ pindex }}     {% endif %}    {% endfor %}    {% if page.has_next %}    下一页>    {% endif %}   

    search.html

    至此,我们可以在页面上搜索一下内容,应该是能成功的,但也有可能不会返回任何数据就算name就是你搜索的内容,这是因为我们现在使用的主要还是为英语服务的分词包,接下来我们要配置使用中文分词包了。

    使用中文分词包jieba

    在前面的配置中我们已经安装了jieba;

    创建 ChineseAnalyzer.py 文件

    进入虚拟环境下的 Lib\site-packages\haystack\backends 目录下新建 ChineseAnalyzer.py 文件

    目录如下图

    怎么在Django中利用haystack和whoosh实现一个搜索功能

    在文件中添加如下内容

    import jieba
    from whoosh.analysis import Tokenizer, Token
    class ChineseTokenizer(Tokenizer):
     def __call__(self, value, positions=False, chars=False,
         keeporiginal=False, removestops=True,
         start_pos=0, start_char=0, mode='', **kwargs):
      t = Token(positions, chars, removestops=removestops, mode=mode,
         **kwargs)
      seglist = jieba.cut(value, cut_all=True)
      for w in seglist:
       t.original = t.text = w
       t.boost = 1.0
       if positions:
        t.pos = start_pos + value.find(w)
       if chars:
        t.startchar = start_char + value.find(w)
        t.endchar = start_char + value.find(w) + len(w)
       yield t
    def ChineseAnalyzer():
     return ChineseTokenizer()

    ChineseAnalyzer.py

    编写haystack可使用的 whoosh_cn_backend.py 文件

    直接在 虚拟环境下的 Lib\site-packages\haystack\backends 目录下复制一份 whoosh_backend.py 文件 并且重命名复制文件为 whoosh_cn_backend.py;

    在 whoosh_cn_backend.py 中导入我们编写的 ChineseAnalyzer 类

    from .ChineseAnalyzer import ChineseAnalyzer

    更改haystack使用的分词包为 jieba 编写的中文分词类,大概在第160行左右

    # schema_fields[field_class.index_fieldname] = TEXT(stored=True, analyzer=StemmingAnalyzer(), field_boost=field_class.boost, sortable=True)
    schema_fields[field_class.index_fieldname] = TEXT(stored=True, analyzer=ChineseAnalyzer(), field_boost=field_class.boost, sortable=True)

    配置whoosh引擎使用 whoosh_cn_backend.py

    在settings文件中更改原来的配置如下

    # 全文检索框架的配置
    HAYSTACK_CONNECTIONS = {
     'default': {
      # 使用whoosh引擎
      # 'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine',
      'ENGINE': 'haystack.backends.whoosh_cn_backend.WhooshEngine',
      # 索引文件路径
      'PATH': os.path.join(BASE_DIR, 'whoosh_index'),
     }
    }
    # 当添加、修改、删除数据时,自动生成索引
    HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'

    重新生成索引文件

    python manage.py rebuild_index

    至此,就可以放心的使用搜索功能了,如图,搜索成功的显示页面

    怎么在Django中利用haystack和whoosh实现一个搜索功能

    可以通过如下配置控制每个分页显示的搜索出来对象的数目

    # 指定搜索结果每页显示的条数
    HAYSTACK_SEARCH_RESULTS_PER_PAGE = 1

    上述就是小编为大家分享的怎么在Django中利用haystack和whoosh实现一个搜索功能了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联行业资讯频道。


    网站栏目:怎么在Django中利用haystack和whoosh实现一个搜索功能-创新互联
    文章URL:http://csdahua.cn/article/dpecii.html
    扫二维码与项目经理沟通

    我们在微信上24小时期待你的声音

    解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流

    其他资讯