扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
站在用户的角度思考问题,与客户深入沟通,找到月湖网站设计与月湖网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计制作、成都做网站、企业官网、英文网站、手机端网站、网站推广、域名注册、网页空间、企业邮箱。业务覆盖月湖地区。这篇文章主要介绍了Python计算矩阵和与积的方法,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获。下面让小编带着大家一起了解一下。
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。
一、numpy的导入和使用
from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。
二、矩阵的创建
由一维或二维数据创建矩阵
from numpy import *; a1=array([1,2,3]); a1=mat(a1);
创建常见的矩阵
data1=mat(zeros((3,3))); #创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3) data2=mat(ones((2,4))); #创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int data3=mat(random.rand(2,2)); #这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix data4=mat(random.randint(10,size=(3,3))); #生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数 data5=mat(random.randint(2,8,size=(2,5)); #产生一个2-8之间的随机整数矩阵 data6=mat(eye(2,2,dtype=int)); #产生一个2*2的对角矩阵 a1=[1,2,3]; a2=mat(diag(a1)); #生成一个对角线为1、2、3的对角矩阵
三、常见的矩阵运算
1. 矩阵相乘
a1=mat([1,2]); a2=mat([[1],[2]]); a3=a1*a2; #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
2. 矩阵点乘
矩阵对应元素相乘
a1=mat([1,1]); a2=mat([2,2]); a3=multiply(a1,a2);
矩阵点乘
a1=mat([2,2]); a2=a1*2;
3.矩阵求逆,转置
矩阵求逆
a1=mat(eye(2,2)*0.5); a2=a1.I; #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
矩阵转置
a1=mat([[1,1],[0,0]]); a2=a1.T;
4.计算矩阵对应行列的大、最小值、和。
a1=mat([[1,1],[2,3],[4,2]]);
计算每一列、行的和
a2=a1.sum(axis=0);//列和,这里得到的是1*2的矩阵 a3=a1.sum(axis=1);//行和,这里得到的是3*1的矩阵 a4=sum(a1[1,:]);//计算第一行所有列的和,这里得到的是一个数值
计算大、最小值和索引
a1.max();//计算a1矩阵中所有元素的大值,这里得到的结果是一个数值 a2=max(a1[:,1]);//计算第二列的大值,这里得到的是一个1*1的矩阵 a1[1,:].max();//计算第二行的大值,这里得到的是一个一个数值 np.max(a1,0);//计算所有列的大值,这里使用的是numpy中的max函数 np.max(a1,1);//计算所有行的大值,这里得到是一个矩阵 np.argmax(a1,0);//计算所有列的大值对应在该列中的索引 np.argmax(a1[1,:]);//计算第二行中大值对应在改行的索引
5.矩阵的分隔和合并
矩阵的分隔,同列表和数组的分隔一致。
a=mat(ones((3,3))); b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素
矩阵的合并
a=mat(ones((2,2))); b=mat(eye(2)); c=vstack((a,b));//按列合并,即增加行数 d=hstack((a,b));//按行合并,即行数不变,扩展列数
四、矩阵、列表、数组的转换
列表可以修改,并且列表中元素可以使不同类型的数据,如下:
l1=[[1],'hello',3];
numpy中数组,同一个数组中所有元素必须为同一个类型,有几个常见的属性:
a=array([[2],[1]]); dimension=a.ndim; m,n=a.shape; number=a.size;//元素总个数 str=a.dtype;//元素的类型
numpy中的矩阵也有与数组常见的几个属性。
它们之间的转换:
a1=[[1,2],[3,2],[5,2]];//列表 a2=array(a1);//将列表转换成二维数组 a3=array(a1);//将列表转化成矩阵 a4=array(a3);//将矩阵转换成数组 a5=a3.tolist();//将矩阵转换成列表 a6=a2.tolist();//将数组转换成列表
这里可以发现三者之间的转换是非常简单的,这里需要注意的是,当列表是一维的时候,将它转换成数组和矩阵后,再通过tolist()转换成列表是不相同的,需要做一些小小的修改。如下:
a1=[1,2,3]; a2=array(a1); a3=mat(a1); a4=a2.tolist();//这里得到的是[1,2,3] a5=a3.tolist();//这里得到的是[[1,2,3]] a6=(a4 == a5);//a6=False a7=(a4 is a5[0]);//a7=True,a5[0]=[1,2,3]
矩阵转换成数值,存在以下一种情况:
dataMat=mat([1]); val=dataMat[0,0];//这个时候获取的就是矩阵的元素的数值,而不再是矩阵的类型
感谢你能够认真阅读完这篇文章,希望小编分享Python计算矩阵和与积的方法内容对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联-成都网站建设公司行业资讯频道,遇到问题就找创新互联,详细的解决方法等着你来学习!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流