bloatnosql的简单介绍

nosql数据库有哪些

1. CouchDB

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名申请雅安服务器托管、营销软件、网站建设、靖州网站维护、网站推广。

所用语言: Erlang

特点:DB一致性,易于使用

使用许可: Apache

协议: HTTP/REST

双向数据复制,

持续进行或临时处理,

处理时带冲突检查,

因此,采用的是master-master复制(见编注2)

MVCC – 写操作不阻塞读操作

可保存文件之前的版本

Crash-only(可靠的)设计

需要不时地进行数据压缩

视图:嵌入式 映射/减少

格式化视图:列表显示

支持进行服务器端文档验证

支持认证

根据变化实时更新

支持附件处理

因此, CouchApps(独立的 js应用程序)

需要 jQuery程序库

最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)

2. Redis

所用语言:C/C++

特点:运行异常快

使用许可: BSD

协议:类 Telnet

有硬盘存储支持的内存数据库,

但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)

Master-slave复制(见编注3)

虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。

INCR co (适合计算极限值或统计数据)

支持 sets(同时也支持 union/diff/inter)

支持列表(同时也支持队列;阻塞式 pop操作)

支持哈希表(带有多个域的对象)

支持排序 sets(高得分表,适用于范围查询)

Redis支持事务

支持将数据设置成过期数据(类似快速缓冲区设计)

Pub/Sub允许用户实现消息机制

最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。

例如:股票价格、数据分析、实时数据搜集、实时通讯。

(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为

Master-slave复制,通常应用在需要提供高可用性的服务器集群。)

3. MongoDB

所用语言:C++

特点:保留了SQL一些友好的特性(查询,索引)。

使用许可: AGPL(发起者: Apache)

协议: Custom, binary( BSON)

Master/slave复制(支持自动错误恢复,使用 sets 复制)

内建分片机制

支持 javascript表达式查询

可在服务器端执行任意的 javascript函数

update-in-place支持比CouchDB更好

在数据存储时采用内存到文件映射

对性能的关注超过对功能的要求

建议最好打开日志功能(参数 –journal)

在32位操作系统上,数据库大小限制在约2.5Gb

空数据库大约占 192Mb

采用 GridFS存储大数据或元数据(不是真正的文件系统)

最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用

CouchDB但因为数据改变太频繁而占满内存的应用程序。

例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。

4. Riak

所用语言:Erlang和C,以及一些Javascript

特点:具备容错能力

使用许可: Apache

协议: HTTP/REST或者 custom binary

可调节的分发及复制(N, R, W)

用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。

使用JavaScript或Erlang进行 Map/reduce

连接及连接遍历:可作为图形数据库使用

索引:输入元数据进行搜索(1.0版本即将支持)

大数据对象支持( Luwak)

提供“开源”和“企业”两个版本

全文本搜索,索引,通过 Riak搜索服务器查询( beta版)

支持Masterless多站点复制及商业许可的 SNMP监控

最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理

bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。

例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。

5. Membase

所用语言: Erlang和C

特点:兼容 Memcache,但同时兼具持久化和支持集群

使用许可: Apache 2.0

协议:分布式缓存及扩展

非常快速(200k+/秒),通过键值索引数据

可持久化存储到硬盘

所有节点都是唯一的( master-master复制)

在内存中同样支持类似分布式缓存的缓存单元

写数据时通过去除重复数据来减少 IO

提供非常好的集群管理 web界面

更新软件时软无需停止数据库服务

支持连接池和多路复用的连接代理

最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序

例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)

6. Neo4j

所用语言: Java

特点:基于关系的图形数据库

使用许可: GPL,其中一些特性使用 AGPL/商业许可

协议: HTTP/REST(或嵌入在 Java中)

可独立使用或嵌入到 Java应用程序

图形的节点和边都可以带有元数据

很好的自带web管理功能

使用多种算法支持路径搜索

使用键值和关系进行索引

为读操作进行优化

支持事务(用 Java api)

使用 Gremlin图形遍历语言

支持 Groovy脚本

支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可

最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别

例如:社会关系,公共交通网络,地图及网络拓谱

7. Cassandra

所用语言: Java

特点:对大型表格和 Dynamo支持得最好

使用许可: Apache

协议: Custom, binary (节约型)

可调节的分发及复制(N, R, W)

支持以某个范围的键值通过列查询

类似大表格的功能:列,某个特性的列集合

写操作比读操作更快

基于 Apache分布式平台尽可能地 Map/reduce

我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)

最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用

Apache的软件被解雇)

例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析

8. HBase

(配合 ghshephard使用)

所用语言: Java

特点:支持数十亿行X上百万列

使用许可: Apache

协议:HTTP/REST (支持 Thrift,见编注4)

在 BigTable之后建模

采用分布式架构 Map/reduce

对实时查询进行优化

高性能 Thrift网关

通过在server端扫描及过滤实现对查询操作预判

支持 XML, Protobuf, 和binary的HTTP

Cascading, hive, and pig source and sink modules

基于 Jruby( JIRB)的shell

对配置改变和较小的升级都会重新回滚

不会出现单点故障

堪比MySQL的随机访问性能

最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。

例如: Facebook消息数据库(更多通用的用例即将出现)

编注4:Thrift

是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源。

当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。

NoSQL自动生成上千万的数据可以有哪些方法

1. CouchDB

所用语言: Erlang

特点:DB一致性,易于使用

使用许可: Apache

协议: HTTP/REST

双向数据复制,

持续进行或临时处理,

处理时带冲突检查,

因此,采用的是master-master复制(见编注2)

MVCC – 写操作不阻塞读操作

可保存文件之前的版本

Crash-only(可靠的)设计

需要不时地进行数据压缩

视图:嵌入式 映射/减少

格式化视图:列表显示

支持进行服务器端文档验证

支持认证

根据变化实时更新

支持附件处理

因此, CouchApps(独立的 js应用程序)

需要 jQuery程序库

最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)

2. Redis

所用语言:C/C++

特点:运行异常快

使用许可: BSD

协议:类 Telnet

有硬盘存储支持的内存数据库,

但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)

Master-slave复制(见编注3)

虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。

INCR co (适合计算极限值或统计数据)

支持 sets(同时也支持 union/diff/inter)

支持列表(同时也支持队列;阻塞式 pop操作)

支持哈希表(带有多个域的对象)

支持排序 sets(高得分表,适用于范围查询)

Redis支持事务

支持将数据设置成过期数据(类似快速缓冲区设计)

Pub/Sub允许用户实现消息机制

最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。

例如:股票价格、数据分析、实时数据搜集、实时通讯。

(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为

Master-slave复制,通常应用在需要提供高可用性的服务器集群。)

3. MongoDB

所用语言:C++

特点:保留了SQL一些友好的特性(查询,索引)。

使用许可: AGPL(发起者: Apache)

协议: Custom, binary( BSON)

Master/slave复制(支持自动错误恢复,使用 sets 复制)

内建分片机制

支持 javascript表达式查询

可在服务器端执行任意的 javascript函数

update-in-place支持比CouchDB更好

在数据存储时采用内存到文件映射

对性能的关注超过对功能的要求

建议最好打开日志功能(参数 –journal)

在32位操作系统上,数据库大小限制在约2.5Gb

空数据库大约占 192Mb

采用 GridFS存储大数据或元数据(不是真正的文件系统)

最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用

CouchDB但因为数据改变太频繁而占满内存的应用程序。

例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。

4. Riak

所用语言:Erlang和C,以及一些Javascript

特点:具备容错能力

使用许可: Apache

协议: HTTP/REST或者 custom binary

可调节的分发及复制(N, R, W)

用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。

使用JavaScript或Erlang进行 Map/reduce

连接及连接遍历:可作为图形数据库使用

索引:输入元数据进行搜索(1.0版本即将支持)

大数据对象支持( Luwak)

提供“开源”和“企业”两个版本

全文本搜索,索引,通过 Riak搜索服务器查询( beta版)

支持Masterless多站点复制及商业许可的 SNMP监控

最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理

bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。

例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。

5. Membase

所用语言: Erlang和C

特点:兼容 Memcache,但同时兼具持久化和支持集群

使用许可: Apache 2.0

协议:分布式缓存及扩展

非常快速(200k+/秒),通过键值索引数据

可持久化存储到硬盘

所有节点都是唯一的( master-master复制)

在内存中同样支持类似分布式缓存的缓存单元

写数据时通过去除重复数据来减少 IO

提供非常好的集群管理 web界面

更新软件时软无需停止数据库服务

支持连接池和多路复用的连接代理

最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序

例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)

6. Neo4j

所用语言: Java

特点:基于关系的图形数据库

使用许可: GPL,其中一些特性使用 AGPL/商业许可

协议: HTTP/REST(或嵌入在 Java中)

可独立使用或嵌入到 Java应用程序

图形的节点和边都可以带有元数据

很好的自带web管理功能

使用多种算法支持路径搜索

使用键值和关系进行索引

为读操作进行优化

支持事务(用 Java api)

使用 Gremlin图形遍历语言

支持 Groovy脚本

支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可

最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别

例如:社会关系,公共交通网络,地图及网络拓谱

7. Cassandra

所用语言: Java

特点:对大型表格和 Dynamo支持得最好

使用许可: Apache

协议: Custom, binary (节约型)

可调节的分发及复制(N, R, W)

支持以某个范围的键值通过列查询

类似大表格的功能:列,某个特性的列集合

写操作比读操作更快

基于 Apache分布式平台尽可能地 Map/reduce

我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)

最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用

Apache的软件被解雇)

例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析

8. HBase

(配合 ghshephard使用)

所用语言: Java

特点:支持数十亿行X上百万列

使用许可: Apache

协议:HTTP/REST (支持 Thrift,见编注4)

在 BigTable之后建模

采用分布式架构 Map/reduce

对实时查询进行优化

高性能 Thrift网关

通过在server端扫描及过滤实现对查询操作预判

支持 XML, Protobuf, 和binary的HTTP

Cascading, hive, and pig source and sink modules

基于 Jruby( JIRB)的shell

对配置改变和较小的升级都会重新回滚

不会出现单点故障

堪比MySQL的随机访问性能

最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。

例如: Facebook消息数据库(更多通用的用例即将出现)

编注4:Thrift

是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源。

当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。

嵌入式实时数据库系统并发控制机制的特点主要体现在哪些方面

1. CouchDB所用语言: Erlang 特点:DB一致性,易于使用 使用许可: Apache 协议: HTTP/REST 双向数据复制, 持续进行或临时处理, 处理时带冲突检查, 因此,采用的是master-master复制(见编注2) MVCC – 写操作不阻塞读操作 可保存文件之前的版本 Crash-only(可靠的)设计 需要不时地进行数据压缩 视图:嵌入式 映射/减少 格式化视图:列表显示 支持进行服务器端文档验证 支持认证 根据变化实时更新 支持附件处理 因此, CouchApps(独立的 js应用程序) 需要 jQuery程序库最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)2. Redis所用语言:C/C++ 特点:运行异常快 使用许可: BSD 协议:类 Telnet 有硬盘存储支持的内存数据库, 但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!) Master-slave复制(见编注3) 虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。 INCR co (适合计算极限值或统计数据) 支持 sets(同时也支持 union/diff/inter) 支持列表(同时也支持队列;阻塞式 pop操作) 支持哈希表(带有多个域的对象) 支持排序 sets(高得分表,适用于范围查询) Redis支持事务 支持将数据设置成过期数据(类似快速缓冲区设计) Pub/Sub允许用户实现消息机制最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。例如:股票价格、数据分析、实时数据搜集、实时通讯。(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为 Master-slave复制,通常应用在需要提供高可用性的服务器集群。)3. MongoDB所用语言:C++ 特点:保留了SQL一些友好的特性(查询,索引)。 使用许可: AGPL(发起者: Apache) 协议: Custom, binary( BSON) Master/slave复制(支持自动错误恢复,使用 sets 复制) 内建分片机制 支持 javascript表达式查询 可在服务器端执行任意的 javascript函数 update-in-place支持比CouchDB更好 在数据存储时采用内存到文件映射 对性能的关注超过对功能的要求 建议最好打开日志功能(参数 –journal) 在32位操作系统上,数据库大小限制在约2.5Gb 空数据库大约占 192Mb 采用 GridFS存储大数据或元数据(不是真正的文件系统)最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用 CouchDB但因为数据改变太频繁而占满内存的应用程序。例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。4. Riak所用语言:Erlang和C,以及一些Javascript 特点:具备容错能力 使用许可: Apache 协议: HTTP/REST或者 custom binary 可调节的分发及复制(N, R, W) 用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。 使用JavaScript或Erlang进行 Map/reduce 连接及连接遍历:可作为图形数据库使用 索引:输入元数据进行搜索(1.0版本即将支持) 大数据对象支持( Luwak) 提供“开源”和“企业”两个版本 全文本搜索,索引,通过 Riak搜索服务器查询( beta版) 支持Masterless多站点复制及商业许可的 SNMP监控最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理 bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。5. Membase所用语言: Erlang和C 特点:兼容 Memcache,但同时兼具持久化和支持集群 使用许可: Apache 2.0 协议:分布式缓存及扩展 非常快速(200k+/秒),通过键值索引数据 可持久化存储到硬盘 所有节点都是唯一的( master-master复制) 在内存中同样支持类似分布式缓存的缓存单元 写数据时通过去除重复数据来减少 IO 提供非常好的集群管理 web界面 更新软件时软无需停止数据库服务 支持连接池和多路复用的连接代理最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)6. Neo4j所用语言: Java 特点:基于关系的图形数据库 使用许可: GPL,其中一些特性使用 AGPL/商业许可 协议: HTTP/REST(或嵌入在 Java中) 可独立使用或嵌入到 Java应用程序 图形的节点和边都可以带有元数据 很好的自带web管理功能 使用多种算法支持路径搜索 使用键值和关系进行索引 为读操作进行优化 支持事务(用 Java api) 使用 Gremlin图形遍历语言 支持 Groovy脚本 支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别例如:社会关系,公共交通网络,地图及网络拓谱7. Cassandra所用语言: Java 特点:对大型表格和 Dynamo支持得最好 使用许可: Apache 协议: Custom, binary (节约型) 可调节的分发及复制(N, R, W) 支持以某个范围的键值通过列查询 类似大表格的功能:列,某个特性的列集合 写操作比读操作更快 基于 Apache分布式平台尽可能地 Map/reduce 我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用 Apache的软件被解雇)例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析8. HBase(配合 ghshephard使用)所用语言: Java 特点:支持数十亿行X上百万列 使用许可: Apache 协议:HTTP/REST (支持 Thrift,见编注4) 在 BigTable之后建模 采用分布式架构 Map/reduce 对实时查询进行优化 高性能 Thrift网关 通过在server端扫描及过滤实现对查询操作预判 支持 XML, Protobuf, 和binary的HTTP Cascading, hive, and pig source and sink modules 基于 Jruby( JIRB)的shell 对配置改变和较小的升级都会重新回滚 不会出现单点故障 堪比MySQL的随机访问性能最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。例如: Facebook消息数据库(更多通用的用例即将出现)编注4:Thrift 是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源。当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。


网页标题:bloatnosql的简单介绍
网页地址:http://csdahua.cn/article/dsdjhhd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流