nosql查询统计性能的简单介绍

newsql和nosql的区别和联系

在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。

创新互联公司主营二道江网站建设的网络公司,主营网站建设方案,成都app软件开发公司,二道江h5成都小程序开发搭建,二道江网站营销推广欢迎二道江等地区企业咨询

OldSQL+NewSQL 在数据中心类应用中混合部署

采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。

商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。

商业银行数据中心存储架构

与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。

OldSQL+NoSQL 在互联网大数据应用中混合部署

在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。

数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。

淘宝海量数据产品技术架构

基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。

NewSQL+NoSQL 在行业大数据应用中混合部署

行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。

在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。

当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。

集中化BI系统数据存储架构

集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。

结语

当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。

目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。

nosql数据库库和sql数据库的区别

一、概念

SQL (Structured Query Language) 数据库,指关系型数据库。主要代表:SQL Server,Oracle,MySQL(开源),PostgreSQL(开源)。

NoSQL(Not Only SQL)泛指非关系型数据库。主要代表:MongoDB,Redis,CouchDB。

二、区别

1、存储方式

SQL数据存在特定结构的表中;而NoSQL则更加灵活和可扩展,存储方式可以省是JSON文档、哈希表或者其他方式。SQL通常以数据库表形式存储数据。举个栗子,存个学生借书数据:

而NoSQL存储方式比较灵活,比如使用类JSON文件存储上表中熊大的借阅数据:

2、表/数据集合的数据的关系

在SQL中,必须定义好表和字段结构后才能添加数据,例如定义表的主键(primary key),索引(index),触发器(trigger),存储过程(stored procedure)等。表结构可以在被定义之后更新,但是如果有比较大的结构变更的话就会变得比较复杂。在NoSQL中,数据可以在任何时候任何地方添加,不需要先定义表。例如下面这段代码会自动创建一个新的"借阅表"数据集合:

NoSQL也可以在数据集中建立索引。以MongoDB为例,会自动在数据集合创建后创建唯一值_id字段,这样的话就可以在数据集创建后增加索引。

从这点来看,NoSQL可能更加适合初始化数据还不明确或者未定的项目中。

3、外部数据存储

SQL中如何需要增加外部关联数据的话,规范化做法是在原表中增加一个外键,关联外部数据表。例如需要在借阅表中增加审核人信息,先建立一个审核人表:

再在原来的借阅人表中增加审核人外键:

这样如果我们需要更新审核人个人信息的时候只需要更新审核人表而不需要对借阅人表做更新。而在NoSQL中除了这种规范化的外部数据表做法以外,我们还能用如下的非规范化方式把外部数据直接放到原数据集中,以提高查询效率。缺点也比较明显,更新审核人数据的时候将会比较麻烦。

4、SQL中的JOIN查询

SQL中可以使用JOIN表链接方式将多个关系数据表中的数据用一条简单的查询语句查询出来。NoSQL暂未提供类似JOIN的查询方式对多个数据集中的数据做查询。所以大部分NoSQL使用非规范化的数据存储方式存储数据。

5、数据耦合性

SQL中不允许删除已经被使用的外部数据,例如审核人表中的"熊三"已经被分配给了借阅人熊大,那么在审核人表中将不允许删除熊三这条数据,以保证数据完整性。而NoSQL中则没有这种强耦合的概念,可以随时删除任何数据。

6、事务

SQL中如果多张表数据需要同批次被更新,即如果其中一张表更新失败的话其他表也不能更新成功。这种场景可以通过事务来控制,可以在所有命令完成后再统一提交事务。而NoSQL中没有事务这个概念,每一个数据集的操作都是原子级的。

7、增删改查语法

8、查询性能

在相同水平的系统设计的前提下,因为NoSQL中省略了JOIN查询的消耗,故理论上性能上是优于SQL的。

高性能 NoSQL

关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:

表结构是强约束的,业务变更时扩充很麻烦。

如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。

全文搜索只能使用 Like 进行整表扫描,性能非常低。

针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。

NoSQL != No SQL,而是:

NoSQL = Not Only SQL

典型的 NoSQL 方案分为4类:

Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。

以 list 为例:

LPOP key 是移除并返回队列左边的第一个元素。

如果用关系数据库就比较麻烦了,需要操作:

Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。

最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。

特点:

以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。

文档数据库的主要缺点:

关系数据库是按行来存储的,列式数据库是按照列来存储数据。

按行存储的优势:

在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。

而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。

除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。

列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。

一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。

关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:

假设有一个交友网站,信息表如下:

需要匹配性别、地点、语言列。

需要匹配性别、地点、爱好列。

实际搜索中,各种排列组合非常多,关系数据库很难支持。

全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:

所以特别适合根据关键词来查询文档内容。

上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。


本文标题:nosql查询统计性能的简单介绍
文章路径:http://csdahua.cn/article/dseeigp.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流