扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
--B.三个月按90天算
创新互联专注于企业全网营销推广、网站重做改版、鹿邑网站定制设计、自适应品牌网站建设、成都h5网站建设、成都商城网站开发、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为鹿邑等各大城市提供网站开发制作服务。
select EQID,EQNAME from EQUIPMENTS where datediff(day,CURMTDATE,getdate())90
--E
select DEPT,count(设备编号) 设备数量 from EQIUPMENTS where STATUS='故障' group by DEPT
1、查看表空间的大小,首先我们要登录到oracle数据库,我们要使用管理员的身份登录,因为管理员的权限要相对的大一些。
2、登录到数据库之后,我们要在侧边栏找到dataspace这个文件夹,这个文件夹下存放的就是我们管理员可以管理的所有的表空间的名称。
3、根据dataspace文件夹下的内容名称,选择我们想要看的表空间,使用右键点击的方式,选择右键显示中的属性按钮。
4、进入到属性表之后,我们可以看到当前表空间的许多属性,其中有个属性叫做segment space management的选项,当这个选项的值为auto的时候,表示当前表空间是可以自增长的,否则就是固定大小的。
方法和详细的操作步骤如下:
1、第一步,查询该库中的所有表,测试sql,代码见下图,转到下面的步骤。
2、第二步,执行完上面的操作之后,查询有多少个数据表,见下图,转到下面的步骤。
3、第三步,执行完上面的操作之后,在TEST的开头编写一个查询表的脚本,每个表中的记录数,代码见下图,转到下面的步骤。
4、第四步,执行完上面的操作之后,执行sql,在输出窗口中,可以看到每个表的输出,见下图。这样,就解决了这个问题了。
用ln()函数,如:
select
ln(1),
ln(2)
from
dual;
还有一个函数是LOG(n1,n2),返回一个以n1为底n2的对数,如:
select
log(2,1),
log(2,4)
from
dual;
对数函数 [编辑本段]对数的定义和运算性质 一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。 底数则要大于0且不为1 对数的运算性质: 当a0且a≠1时,M0,N0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)换底公式:log(A)M=log(b)M/log(b)A (b0且b≠1) 对数与指数之间的关系 当a0且a≠1时,a^x=N x=㏒(a)N 对数函数的常用简略表达方式: (1)log(a)(b)=log(a)(b) (2)常用对数:lg(b)=log(10)(b) (3)自然对数:ln(b)=log(e)(b) e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义 对数函数的一般形式为 y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a0且a≠1),同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 [编辑本段]性质 定义域:(0,+∞)值域:实数集R 定点:函数图像恒过定点(1,0)。 单调性:a1时,在定义域上为单调增函数,并且上凸; 0 奇偶性:非奇非偶函数 周期性:不是周期函数 零点:x=1 [编辑本段]对数函数的历史: 16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。 德国的史提非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。 欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。 纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方 法,其核心思想表现为算术数列与几何数列之间的联系。在他的《奇妙的对数表的描述》中阐明了对数原理,后人称为 纳皮尔对数,记为Nap.㏒x,它与自然对数的关系为 Nap.㏒x=107㏑(107/x) 由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离。 瑞士的彪奇(1552-1632)也独立地发现了对数,可能比纳皮尔较早,但发表较迟(1620)。 英国的布里格斯在1624年创造了常用对数。 1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828...为底)。 对数的发明为当时社会的发展起了重要的影响,正如科学家伽利略(1564-1642)说:「给我时间,空间和对数,我可以创造出一个宇宙」。又如十八世纪数学家拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」。 最早传入我国的对数著作是《比例与对数》,它是由波兰的穆尼斯(1611-1656)和我国的薛凤祚在17世纪中叶合 编而成的。当时在lg2=0.3010中,2叫「真数」,0.3010叫做「假数」,真数与假数对列成表,故称对数表。后来改用 「假数」为「对数」。 我国清代的数学家戴煦(1805-1860)发展了多种的求对数的捷法,著有《对数简法》(1845)、《续对数简法》(1846)等。1854年,英国的数学家艾约瑟(1825-1905) 看到这些著作后,大为叹服。 当今中学数学教科书是先讲「指数」,后以反函数形式引出「对数」的概念。但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念。布里格斯曾向纳皮尔提出用幂指数表示对数的建议。1742年 ,J.威廉(1675-1749)在给G.威廉的《对数表》所写的前言中作出指数可定义对数。而欧拉在他的名著《无穷小 分析寻论》(1748)中明确提出对数函数是指数函数的逆函数,和现在教科书中的提法一致。 二次函数目录[隐藏] 定义与定义表达式 二次函数的三种表达式 二次函数的图像 抛物线的性质 二次函数与一元二次方程 中考典例 [编辑本段]定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。) 二次函数表达式的右边通常为二次。 x是自变量,y是x的二次函数 [编辑本段]二次函数的三种表达式 ①一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax+bx+c,其顶点坐标为(-b/2a),(4ac-b2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2;)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2;-4ac)]/2a(即一元二次方程求根公式) [编辑本段]二次函数的图像 在平面直角坐标系中作出二次函数y=x²的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像 [编辑本段]抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b²)/4a ) 当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所以b/2a要大于0,所以a、b要同号 当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要异号 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b²-4ac>0时,抛物线与x轴有2个交点。 Δ= b²-4ac=0时,抛物线与x轴有1个交点。 _______ Δ= b²-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b²-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是减函数,在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b²/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0) 7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b²)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax²+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b²)/4a); ⑷Δ=b²-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ<0,图象与x轴无交点; ②y=a(x-h)²+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b²)/4a); [编辑本段]二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax²+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax²+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)² +k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax² y=ax²+K y=a(x-h)² y=a(x-h)²+k y=ax²+bx+c 顶点坐标 (0,0) (0,K) (h,0) (h,k) (-b/2a,sqrt[4ac-b²]/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到, 当h0时,则向左平行移动|h|个单位得到. 当h0,k0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象; 当h0,k0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象; 因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax²+bx+c(a≠0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²]/4a). 3.抛物线y=ax²+bx+c(a≠0),若a0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小. 4.抛物线y=ax²+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b²-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax²+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x?-x?| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标) 当△=0.图象与x轴只有一个交点; 当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0. 5.抛物线y=ax²+bx+c的最值:如果a0(a0),则当x= -b/2a时,y最小(大)值=(4ac-b²)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax²+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现. [编辑本段]中考典例 1.(北京西城区)抛物线y=x²-2x+1的对称轴是( ) (A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2 考点:二次函数y=ax²+bx+c的对称轴. 评析:因为抛物线y=ax²+bx+c的对称轴方程是:x=-b/2a,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确. 另一种方法:可将抛物线配方为y=a(x-h)²+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)²,所以对称轴x=1,应选A. 2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式: . 考点:二次函数y=ax²+bx+c的求法 评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2). 『因为顶点式a(x+x1)(x+x2),又因为与y轴交点的横坐标为0,所以a(0+x1)(0+x2),也就是ax1x2 ∵抛物线对称轴是直线x=4, ∴x2-4=4 - x1即:x1+ x2=8 ① ∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3, 即:x2- x1= ② ①②两式相加减,可得:x2=4+,x1=4- ∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。 当ax1x2=±1时,x2=7,x1=1,a=± 当ax1x2=±3时,x2=5,x1=3,a=± 因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3) 即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3 说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。 5.( 河北省)如图13-28所示,二次函数y=x²-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( ) A、6 B、4 C、3 D、1 考点:二次函数y=ax2+bx+c的图象及性质的运用。 评析:由函数图象可知C点坐标为(0,3),再由x²-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。那么△ABC的面积为3,故应选C。 图13-28 6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。 (1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低? (2)第10分时,学生的接受能力是什么? (3)第几分时,学生的接受能力最强? 考点:二次函数y=ax²+bx+c的性质。 评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x<13时,y随x的增大而增大,当x13时,y随x的增大而减小。而该函数自变量的范围为:0<x3<0,所以两个范围应为0<x<13;13<x<30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下: 解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9 所以,当0<x<13时,学生的接受能力逐步增强。 当13<x<30时,学生的接受能力逐步下降。 (2)当x=10时,y=-0.1(10-13)2+59.9=59。 第10分时,学生的接受能力为59。 (3)x=13时,y取得最大值, 所以,在第13分时,学生的接受能力最强。 9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围); (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为 :(55–40)×450=6750(元). (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为: y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x²+1400x–40000(元), ∴y与x的函数解析式为:y =–10x²+1400x–40000. (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000, 即:x2–140x+4800=0, 解得:x1=60,x2=80. 当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为: 40×400=16000(元); 当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为: 40×200=8000(元); 由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元. 19.2006义乌市经济继续保持平稳较快的增长态势,全市实现生产总值 元,已知全市生产总值=全市户籍人口×全市人均生产产值,设义乌市2006年户籍人口为x(人),人均生产产值为y(元). (1)求y关于x的函数关系式; (2)2006年义乌市户籍人口为706 684人,求2006年义乌市人均生产产值(单位:元,结果精确到个位):若按2006年全年美元对人民币的平均汇率计(1美元=7.96元人民币),义乌市2006年人均生产产值是否已跨越6000美元大关? 20.下图1为义乌市2005年,2006年城镇居民人均可支配收入构成条形统计图。图2为义乌市2006年城镇居民人均可支配收入构成扇形统计图,城镇居民个人均可支配收入由工薪收入、经营净收入、财产性收入、转移性收入四部分组成。请根据图中提供的信息回答下列问题: (1)2005年义乌市城镇居民人均工薪收入为________元,2006年义乌市城镇居民人均可支配收入为_______元; (2)在上图2的扇形统计图中,扇形区域A表示2006年的哪一部分收入:__________. (3)求义乌市2005年到2006年城镇居民人远亲中支配收入的增长率(精确到0.1℅) 19.解:(1) (x为正整数) (2)2006年全市人均生产产值= (元)(2分) 我市2006年人均生产产值已成功跨越6000美元大关(1分) ²
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流