python中svr函数,python svr

如何利用python使用libsvm

一:libsvm包下载与使用:

创新互联公司是一家集网站建设,奉贤企业网站建设,奉贤品牌网站建设,网站定制,奉贤网站建设报价,网络营销,网络优化,奉贤网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码。

1.

把包解压在C盘之中,如:C:\libsvm-3.18

2.

因为要用libsvm自带的脚本grid.py和easy.py,需要去官网下载绘图工具gnuplot,解压到c盘

3.

进入c:\libsvm\tools目录下,用文本编辑器(记事本,edit都可以)修改grid.py和easy.py两个文件,找到其中关于gnuplot路径的那项,根据实际路径进行修改,并保存

4python与libsvm的连接(参考SVM学习笔记(2)LIBSVM在python下的使用 )

a.打开IDLE(python GUI),输入

import sys

sys.version

如果你的python是32位,将出现如下字符:

‘2.7.3 (default, Apr 10 2012, 23:31:26) [MSC v.1500 32 bit (Intel)]’

这个时候LIBSVM的python接口设置将非常简单。在libsvm-3.16文件夹下的windows文件夹中找到动态链接库libsvm.dll,将其添加到系统目录,如`C:\WINDOWS\system32\’,即可在python中使用libsvm

b.如果你是64位的请参考文献,请参考上述连接。

5.执行一个小例子

import os

os.chdir('C:\libsvm-3.18\python')#请根据实际路径修改

from svmutil import *

y, x = svm_read_problem('../heart_scale')#读取自带数据

m = svm_train(y[:200], x[:200], '-c 4')

p_label, p_acc, p_val = svm_predict(y[200:], x[200:], m)

##出现如下结果,应该是正确安装了

optimization finished, #iter = 257

nu = 0.351161

obj = -225.628984, rho = 0.636110

nSV = 91, nBSV = 49

Total nSV = 91

Accuracy = 84.2857% (59/70) (classification)

二几个简单的例子

下载实验数据集。并且将数据集拷贝到C:\libsvm-3.18\windows下(因为之后我们需要利用该文件夹下的其他文件,这样比较方便,当然之后你用绝对地址也可以了)

建立一个py文件,写下如下代码:

例1:

import os

os.chdir('C:\libsvm-3.18\windows')#设定路径

from svmutil import *

y, x = svm_read_problem('train.1.txt')#读入训练数据

yt, xt = svm_read_problem('test.1.txt')#训练测试数据

m = svm_train(y, x )#训练

svm_predict(yt,xt,m)#测试

执行上述代码,精度为:Accuracy = 66.925% (2677/4000) (classification)

常用接口

svm_train() : train an SVM model#训练

svm_predict() : predict testing data#预测

svm_read_problem() : read the data from a LIBSVM-format file.#读取libsvm格式的数据

svm_load_model() : load a LIBSVM model.

svm_save_model() : save model to a file.

evaluations() : evaluate prediction results.

- Function: svm_train#三种训练写法

There are three ways to call svm_train()

model = svm_train(y, x [, 'training_options'])

model = svm_train(prob [, 'training_options'])

model = svm_train(prob, param)

有关参数的设置(read me 文件夹中有详细说明):

Usage: svm-train [options] training_set_file [model_file]

options:

-s svm_type : set type of SVM (default 0)#选择哪一种svm

0 -- C-SVC (multi-class classification)

1 -- nu-SVC (multi-class classification)

2 -- one-class SVM

3 -- epsilon-SVR (regression)

4 -- nu-SVR (regression)

-t kernel_type : set type of kernel function (default 2)#是否用kernel trick

0 -- linear: u'*v

1 -- polynomial: (gamma*u'*v + coef0)^degree

2 -- radial basis function: exp(-gamma*|u-v|^2)

3 -- sigmoid: tanh(gamma*u'*v + coef0)

4 -- precomputed kernel (kernel values in training_set_file)

-d degree : set degree in kernel function (default 3)

-g gamma : set gamma in kernel function (default 1/num_features)

-r coef0 : set coef0 in kernel function (default 0)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB (default 100)

-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)

-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)

-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)

-v n: n-fold cross validation mode

-q : quiet mode (no outputs)

三提高预测的准确率:

通过一定的过程,可以提高预测的准确率(在文献2中有详细介绍):

a.转换数据为libsvm可用形式.(可以通过下载的数据了解格式)

b.进行一个简单的尺度变换

c.利用RBF kernel,利用cross-validation来查找最佳的参数 C 和 r

d.利用最佳参数C 和 r ,来训练整个数据集

e.测试

再看例子1:

1.进入cmd模式下,输入如下代码,将现有数据进行适度变换,生成变换后的数据文件train.1.scale.txt

参数说明:

-l 变换后的下限

-u 变换后的上限

-s 参考上文

2执行以下代码

import os

os.chdir('C:\libsvm-3.18\windows')#设定路径

from svmutil import *

y, x = svm_read_problem('train.1.scale.txt')#读入训练数据

yt, xt = svm_read_problem('test.1.scale.txt')#训练测试数据

m = svm_train(y, x )#训练

svm_predict(yt,xt,m)#测试

精确度为Accuracy = 95.6% (3824/4000) (classification)。

可见我们只是做了简单的尺度变换后,预测的正确率大大提升了。

3通过选择最优参数,再次提高预测的准确率:(需要把tools文件下的grid.py拷贝到'C:\libsvm-3.18\windows'下)

import os

os.chdir('C:\libsvm-3.18\windows')#设定路径

from svmutil import *

from grid import *

rate, param = find_parameters('train.1.scale.txt', '-log2c -3,3,1 -log2g -3,3,1')

y, x = svm_read_problem('train.1.scale.txt')#读入训练数据

yt, xt = svm_read_problem('test.1.scale.txt')#训练测试数据

m = svm_train(y, x ,'-c 2 -g 4')#训练

p_label,p_acc,p_vals=svm_predict(yt,xt,m)#测试

执行上面的程序,find_parmaters函数,可以找到对应训练数据较好的参数。后面的log2c,log2g分别设置C和r的搜索范围。搜索机制是以2为底指数搜索,如 –log2c –3 , 3,1 就是参数C,从2^-3,2^-2,2^-1…搜索到2^3.

搜索到较好参数后,在训练的时候加上参数的设置。

另外,读者可以自己试试数据集2,3.

详细资料,请参见参考文献。PS:个人建议,比较复杂的问题,一上来还是先参考官方的文档,或者paper,书籍,比较好。然后再结合网络博客等资料可以快速理解解决问题。

python 函数参数类型

python 的函数参数类型分为4种:

1.位置参数:调用函数时根据函数定义的参数位置来传递参数,位置参数也可以叫做必要参数,函数调用时必须要传的参数。

当参数满足函数必要参数传参的条件,函数能够正常执行:

add(1,2) #两个参数的顺序必须一一对应,且少一个参数都不可以

当我们运行上面的程序,输出:

当函数需要两个必要参数,但是调用函数只给了一个参数时,程序会抛出异常

add(1)

当我们运行上面的程序,输出:

当函数需要两个必要参数,但是调用函数只给了三个参数时,程序会抛出异常

add(1,2,3)

当我们运行上面的程序,输出

2.关键字参数:用于函数调用,通过“键-值”形式加以指定。可以让函数更加清晰、容易使用,同时也清除了参数的顺序需求。

add(1,2) # 这种方式传参,必须按顺序传参:x对应1,y对应:2

add(y=2,x=1) #以关健字方式传入参数(可以不按顺序)

正确的调用方式

add(x=1, y=2)

add(y=2, x=1)

add(1, y=2)

以上调用方式都是允许的,能够正常执行

错误的调用方式

add(x=1, 2)

add(y=2, 1)

以上调用都会抛出SyntaxError 异常

上面例子可以看出:有位置参数时,位置参数必须在关键字参数的前面,但关键字参数之间不存在先后顺序的

3.默认参数:用于定义函数,为参数提供默认值,调用函数时可传可不传该默认参数的值,所有位置参数必须出现在默认参数前,包括函数定义和调用,有多个默认参数时,调用的时候,既可以按顺序提供默认参数,也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上

默认参数的函数定义

上面示例第一个是正确的定义位置参数的方式,第二个是错误的,因为位置参数在前,默认参数在后

def add1(x=1,y) 的定义会抛出如下异常

默认参数的函数调用

注意:定义默认参数默认参数最好不要定义为可变对象,容易掉坑

不可变对象:该对象所指向的内存中的值不能被改变,int,string,float,tuple

可变对象,该对象所指向的内存中的值可以被改变,dict,list

这里只要理解一下这个概念就行或者自行百度,后续会写相关的专题文章讲解

举一个简单示例

4.可变参数区别:定义函数时,有时候我们不确定调用的时候会多少个参数,j就可以使用可变参数

可变参数主要有两类:

*args: (positional argument) 允许任意数量的可选位置参数(参数),将被分配给一个元组, 参数名前带*,args只是约定俗成的变量名,可以替换其他名称

**kwargs:(keyword argument) 允许任意数量的可选关键字参数,,将被分配给一个字典,参数名前带**,kwargs只是约定俗成的变量名,可以替换其他名称

*args 的用法

args 是用来传递一个非键值对的可变数量的参数列表给函数

语法是使用 符号的数量可变的参数; 按照惯例,通常是使用arg这个单词,args相当于一个变量名,可以自己定义的

在上面的程序中,我们使用* args作为一个可变长度参数列表传递给add()函数。 在函数中,我们有一个循环实现传递的参数计算和输出结果。

还可以直接传递列表或者数组的方式传递参数,以数组或者列表方式传递参数名前面加(*) 号

理解* * kwargs

**kwargs 允许你将不定长度的键值对, 作为参数传递给函数,这些关键字参数在函数内部自动组装为一个dict

下篇详细讲解 *args, **kwargs 的参数传递和使用敬请关注

python内置函数有哪些

python常见的内置函数有:

1. abs()函数返回数字的绝对值。

2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True。

3. any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True,则返回True。 元素除了是 0、空、False外都算 TRUE。

4. bin()函数返回一个整数int或者长整数long int的二进制表示。

5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False。

6. bytearray()方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x 256(即0-255)。即bytearray()是可修改的二进制字节格式。

7. callable()函数用于检查一个对象是否可调用的。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True。(可以加括号的都可以调用)

8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数,返回一个对应的ASCII数值。

9. dict()函数用来将元组/列表转换为字典格式。

10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。

扩展资料:

如何查看python3.6的内置函数?

1、首先先打开python自带的集成开发环境IDLE;

2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;

3、回车之后我们就可以看到python所有的内置函数;

4、接下来我们学习第二种查看python内置函数的方法,我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";

5、然后回车,同样的这个方法也可以得到所有的python内置的函数;

6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";

7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;

8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示。

Python中GridSearchCV在大范围里找到的SVR模型的最优参数结果却更差

这是有可能的啊,因为网格搜索是遍历网格的各种值,然后计算MAE,然后比较哪组参数最优。

两组参数,一组大粒度,一组小粒度,其实大粒度的参数是得不到最优的值的,除非最优参数恰好就是大粒度中的一组;一般是先利用大粒度得到大概的最优值,然后再用小粒度的值找到更精细的最优值,如此而已;

python里面有哪些自带函数?

python系统提供了下面常用的函数:

1. 数学库模块(math)提供了很多数学运算函数;

2.复数模块(cmath)提供了用于复数运算的函数;

3.随机数模块(random)提供了用来生成随机数的函数;

4.时间(time)和日历(calendar)模块提供了能处理日期和时间的函数。

注意:在调用系统函数之前,先要使用import 语句导入 相应的模块

该语句将模块中定义的函数代码复制到自己的程 序中,然后就可以访问模块中的任何函数,其方 法是在函数名前面加上“模块名.”。

希望能帮到你。


本文题目:python中svr函数,python svr
当前地址:http://csdahua.cn/article/dsgodsj.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流