python中gca函数,gcd在python的用法

gca是什么意思?

gca 返回当前axes 对象(坐标区或图)的句柄值;ax = gca用于返回当前图形的当前轴或图表,通常是用鼠标创建或单击的最后一个轴或图表。

创新互联专注于民丰企业网站建设,成都响应式网站建设公司,商城网站定制开发。民丰网站建设公司,为民丰等地区提供建站服务。全流程按需设计网站,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务

图形函数(如标题)以当前轴或图表为目标。使用ax访问和修改轴或图表的属性。如果轴或图表不存在,那么gca创建笛卡尔轴。

gco 返回当前鼠标单击(当前对象)的句柄值;该对象可以是除root 对象外的任意图形对象,并且Matlab 会把当前图形对象的句柄值存放在Figure 的CurrentObject属性中。

图形含义:

Matlab的gcf、gca、gco功能都涉及到了句柄图形的使用。

1句柄图形的含义:句柄图形是对底层图形例程集合的总称,它实际上进行生成图形的工作。这些细节通常隐藏在Matlab图形M文件的内部,但如果想使用它们也是可得到的。

句柄图形允许定制图形的许多特性,但这些图形特性使用高级命令和Matlab基础函数是无法实现的。

matplotlib中的gca()是获得对象子图吗?这又是什么意思?

matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D、文字Text、刻度等在内存中都有一个对象与之对应。

为了方便快速绘图matplotlib通过pyplot模块提供了一套和MATLAB类似的绘图API,将众多绘图对象所构成的复杂结构隐藏在这套API内部。我们只需要调用pyplot模块所提供的函数就可以实现快速绘图以及设置图表的各种细节。pyplot模块虽然用法简单,但不适合在较大的应用程序中使用。

为了将面向对象的绘图库包装成只使用函数的调用接口,pyplot模块的内部保存了当前图表以及当前子图等信息。当前的图表和子图可以使用plt.gcf()和plt.gca()获得,分别表示"Get Current Figure"和"Get Current Axes"。在pyplot模块中,许多函数都是对当前的Figure或Axes对象进行处理,比如说:

plt.plot()实际上会通过plt.gca()获得当前的Axes对象ax,然后再调用ax.plot()方法实现真正的绘图。

可以在Ipython中输入类似"plt.plot??"的命令查看pyplot模块的函数是如何对各种绘图对象进行包装的。

配置属性

matplotlib所绘制的图表的每个组成部分都和一个对象对应,我们可以通过调用这些对象的属性设置方法set_*()或者pyplot模块的属性设置函数setp()设置它们的属性值。

因为matplotlib实际上是一套面向对象的绘图库,因此也可以直接获取对象的属性

配置文件

绘制一幅图需要对许多对象的属性进行配置,例如颜色、字体、线型等等。我们在绘图时,并没有逐一对这些属性进行配置,许多都直接采用了matplotlib的缺省配置。

matplotlib将这些缺省配置保存在一个名为“matplotlibrc”的配置文件中,通过修改配置文件,我们可以修改图表的缺省样式。配置文件的读入可以使用rc_params(),它返回一个配置字典;在matplotlib模块载入时会调用rc_params(),并把得到的配置字典保存到rcParams变量中;matplotlib将使用rcParams字典中的配置进行绘图;用户可以直接修改此字典中的配置,所做的改变会反映到此后创建的绘图元素。

绘制多子图(快速绘图)

Matplotlib 里的常用类的包含关系为 Figure - Axes - (Line2D, Text, etc.)一个Figure对象可以包含多个子图(Axes),在matplotlib中用Axes对象表示一个绘图区域,可以理解为子图。

可以使用subplot()快速绘制包含多个子图的图表,它的调用形式如下:

subplot(numRows, numCols, plotNum)

subplot将整个绘图区域等分为numRows行* numCols列个子区域,然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。如果numRows,numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)和subplot(3,2,3)是相同的。subplot在plotNum指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。

Python作图程序

实战小程序:画出y=x^3的散点图

样例代码如下:

[python] view plain copy

#coding=utf-8

import pylab as y    #引入pylab模块

x = y.np.linspace(-10, 10, 100)  #设置x横坐标范围和点数

y.plot(x, x*x*x,'or')  #生成图像

ax = y.gca()

ax.spines['right'].set_color('none')

ax.spines['top'].set_color('none')

ax.xaxis.set_ticks_position('bottom')

ax.spines['bottom'].set_position(('data', 0))

ax.yaxis.set_ticks_position('left')

ax.spines['left'].set_position(('data', 0))

ax.set_yticks([-1000, -500, 500, 1000])

y.xlim(x.min() , x.max() ) #将横坐标设置为x的最大值和最小值

y.show() #显示图像

[python] view plain copy

import pylab as y

程序中引入的pylab属于matplotlib的一个模块,将其名字用y代替,其中包括了许多NumPy和pyplot模块中常用的函数,方便用户快速进行计算和绘图,十分适合在IPython交互式环境中使用。

[python] view plain copy

y.np.linspace(-10, 10, 100)

此为numpy中的一个函数,返回的是等间距的值,numpy.linspace(a,b,c):a指的是开始位置,b表示的是结束位置,c表示产生点的个数(默认为50)

举例:

[python] view plain copy

np.linspace(2.0, 3.0, num=5)

array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ])

[python] view plain copy

y.plot(x, x*x*x,'or')  #生成图像

后面加上‘o'表示为散点图

'r'可设置颜色为红色,基本上和matlab的操作很像。

[python] view plain copy

y.xlim(x.min(), x.max())

这条语句使用了xlim函数,将横坐标设置为x的大小

求教python一个作图的问题

matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。

它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。

在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不习惯,而且画图质量不高。

而 Matplotlib则比较强:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式)。

本文目录

1. Matplotlib.pyplot快速绘图

2. 面向对象画图

3. Matplotlib.pylab快速绘图

4. 在图表中显示中文

5. 对LaTeX数学公式的支持

6. 对数坐标轴

7. 学习资源

Matplotlib.pyplot快速绘图

快速绘图和面向对象方式绘图

matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D、文字Text、刻度等在内存中都有一个对象与之对应。

为了方便快速绘图matplotlib通过pyplot模块提供了一套和MATLAB类似的绘图API,将众多绘图对象所构成的复杂结构隐藏在这套API内部。我们只需要调用pyplot模块所提供的函数就可以实现快速绘图以及设置图表的各种细节。pyplot模块虽然用法简单,但不适合在较大的应用程序中使用。

为了将面向对象的绘图库包装成只使用函数的调用接口,pyplot模块的内部保存了当前图表以及当前子图等信息。当前的图表和子图可以使用plt.gcf()和plt.gca()获得,分别表示"Get Current Figure"和"Get Current Axes"。在pyplot模块中,许多函数都是对当前的Figure或Axes对象进行处理,比如说:

plt.plot()实际上会通过plt.gca()获得当前的Axes对象ax,然后再调用ax.plot()方法实现真正的绘图。

可以在Ipython中输入类似"plt.plot??"的命令查看pyplot模块的函数是如何对各种绘图对象进行包装的。

配置属性

matplotlib所绘制的图表的每个组成部分都和一个对象对应,我们可以通过调用这些对象的属性设置方法set_*()或者pyplot模块的属性设置函数setp()设置它们的属性值。

因为matplotlib实际上是一套面向对象的绘图库,因此也可以直接获取对象的属性

配置文件

绘制一幅图需要对许多对象的属性进行配置,例如颜色、字体、线型等等。我们在绘图时,并没有逐一对这些属性进行配置,许多都直接采用了matplotlib的缺省配置。

matplotlib将这些缺省配置保存在一个名为“matplotlibrc”的配置文件中,通过修改配置文件,我们可以修改图表的缺省样式。配置文件的读入可以使用rc_params(),它返回一个配置字典;在matplotlib模块载入时会调用rc_params(),并把得到的配置字典保存到rcParams变量中;matplotlib将使用rcParams字典中的配置进行绘图;用户可以直接修改此字典中的配置,所做的改变会反映到此后创建的绘图元素。

绘制多子图(快速绘图)

Matplotlib 里的常用类的包含关系为 Figure - Axes - (Line2D, Text, etc.)一个Figure对象可以包含多个子图(Axes),在matplotlib中用Axes对象表示一个绘图区域,可以理解为子图。

可以使用subplot()快速绘制包含多个子图的图表,它的调用形式如下:

subplot(numRows, numCols, plotNum)

subplot将整个绘图区域等分为numRows行* numCols列个子区域,然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。如果numRows,numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)和subplot(3,2,3)是相同的。subplot在plotNum指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。

subplot()返回它所创建的Axes对象,我们可以将它用变量保存起来,然后用sca()交替让它们成为当前Axes对象,并调用plot()在其中绘图。

绘制多图表(快速绘图)

如果需要同时绘制多幅图表,可以给figure()传递一个整数参数指定Figure对象的序号,如果序号所指定的Figure对象已经存在,将不创建新的对象,而只是让它成为当前的Figure对象。

import numpy as np

import matplotlib.pyplot as plt

plt.figure(1) # 创建图表1

plt.figure(2) # 创建图表2

ax1 = plt.subplot(211) # 在图表2中创建子图1

ax2 = plt.subplot(212) # 在图表2中创建子图2

x = np.linspace(0, 3, 100)

for i in xrange(5):

plt.figure(1)  #❶ # 选择图表1

plt.plot(x, np.exp(i*x/3))

plt.sca(ax1)   #❷ # 选择图表2的子图1

plt.plot(x, np.sin(i*x))

plt.sca(ax2)  # 选择图表2的子图2

plt.plot(x, np.cos(i*x))

plt.show()

在图表中显示中文

matplotlib的缺省配置文件中所使用的字体无法正确显示中文。为了让图表能正确显示中文,可以有几种解决方案。

在程序中直接指定字体。

在程序开头修改配置字典rcParams。

修改配置文件。

matplotlib输出图象的中文显示问题

上面那个link里的修改matplotlibrc方式,我试了好几次都没成功。能work的一个比较简便粗暴的方式(但不知道有没有副作用)是,1.找到字体目录YOURPYTHONHOME\Lib\site-packages\matplotlib\mpl-data\fonts\ttf下的Vera.ttf。这里我们用中文楷体(可以从windows/system32/fonts拷贝过来,对于win8字体文件不是ttf的可以从网上下一个微软雅黑),直接张贴到前面的ttf目录下,然后更名为Vera.ttf。2. 中文字符串用unicode格式,例如:u''测试中文显示'',代码文件编码使用utf-8 加上" # coding = utf-8  "一行。

面向对象画图

matplotlib API包含有三层,Artist层处理所有的高层结构,例如处理图表、文字和曲线等的绘制和布局。通常我们只和Artist打交道,而不需要关心底层的绘制细节。

直接使用Artists创建图表的标准流程如下:

创建Figure对象

用Figure对象创建一个或者多个Axes或者Subplot对象

调用Axies等对象的方法创建各种简单类型的Artists

import matplotlib.pyplot as plt

X1 = range(0, 50) Y1 = [num**2 for num in X1] # y = x^2 X2 = [0, 1] Y2 = [0, 1] # y = x

Fig = plt.figure(figsize=(8,4)) # Create a `figure' instance Ax = Fig.add_subplot(111) # Create a `axes' instance in the figure Ax.plot(X1, Y1, X2, Y2) # Create a Line2D instance in the axes

Fig.show() Fig.savefig("test.pdf")

python绘图篇

1,xlable,ylable设置x,y轴的标题文字。

2,title设置标题。

3,xlim,ylim设置x,y轴显示范围。

plt.show()显示绘图窗口,通常情况下,show()会阻碍程序运行,带-wthread等参数的环境下,窗口不会关闭。

plt.saveFig()保存图像。

面向对象绘图

1,当前图表和子图可以用gcf(),gca()获得。

subplot()绘制包含多个图表的子图。

configure subplots,可调节子图与图表边框距离。

可以通过修改配置文件更改对象属性。

图标显示中文

1,在程序中直接指定字体。

2, 在程序开始修改配置字典reParams.

3,修改配置文件。

Artist对象

1,图标的绘制领域。

2,如何在FigureCanvas对象上绘图。

3,如何使用Renderer在FigureCanvas对象上绘图。

FigureCanvas和Render处理底层图像操作,Artist处理高层结构。

分为简单对象和容器对象,简单的Aritist是标准的绘图元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器类型包含许多简单的的 Aritist对象,使他们构成一个整体,例如Axis,Axes,Figure等。

直接创建Artist对象进项绘图操作步奏:

1,创建Figure对象(通过figure()函数,会进行许多初始化操作,不建议直接创建。)

2,为Figure对象创建一个或多个Axes对象。

3,调用Axes对象的方法创建各类简单的Artist对象。

Figure容器

如何找到指定的Artist对象。

1,可调用add_subplot()和add_axes()方法向图表添加子图。

2,可使用for循环添加栅格。

3,可通过transform修改坐标原点。

Axes容器

1,patch修改背景。

2,包含坐标轴,坐标网格,刻度标签,坐标轴标题等内容。

3,get_ticklabels(),,get-ticklines获得刻度标签和刻度线。

1,可对曲线进行插值。

2,fill_between()绘制交点。

3,坐标变换。

4,绘制阴影。

5,添加注释。

1,绘制直方图的函数是

2,箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位

数、中位数、第三四分位数与最大值来描述数据的一种方法,它可以粗略地看出数据是否具有对称性以及分

布的分散程度等信息,特别可以用于对几个样本的比较。

3,饼图就是把一个圆盘按所需表达变量的观察数划分为若干份,每一份的角度(即面积)等价于每个观察

值的大小。

4,散点图

5,QQ图

低层绘图函数

类似于barplot(),dotchart()和plot()这样的函数采用低层的绘图函数来画线和点,来表达它们在页面上放置的位置以及其他各种特征。

在这一节中,我们会描述一些低层的绘图函数,用户也可以调用这些函数用于绘图。首先我们先讲一下R怎么描述一个页面;然后我们讲怎么在页面上添加点,线和文字;最后讲一下怎么修改一些基本的图形。

绘图区域与边界

R在绘图时,将显示区域划分为几个部分。绘制区域显示了根据数据描绘出来的图像,在此区域内R根据数据选择一个坐标系,通过显示出来的坐标轴可以看到R使用的坐标系。在绘制区域之外是边沿区,从底部开始按顺时针方向分别用数字1到4表示。文字和标签通常显示在边沿区域内,按照从内到外的行数先后显示。

添加对象

在绘制的图像上还可以继续添加若干对象,下面是几个有用的函数,以及对其功能的说明。

•points(x, y, ...),添加点

•lines(x, y, ...),添加线段

•text(x, y, labels, ...),添加文字

•abline(a, b, ...),添加直线y=a+bx

•abline(h=y, ...),添加水平线

•abline(v=x, ...),添加垂直线

•polygon(x, y, ...),添加一个闭合的多边形

•segments(x0, y0, x1, y1, ...),画线段

•arrows(x0, y0, x1, y1, ...),画箭头

•symbols(x, y, ...),添加各种符号

•legend(x, y, legend, ...),添加图列说明

用Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围

转自 跳转链接

 一、用默认设置绘制折线图

import matplotlib.pyplot as plt

x_values=list(range(11))

#x轴的数字是0到10这11个整数

y_values=[x**2 for x in x_values]

#y轴的数字是x轴数字的平方

plt.plot(x_values,y_values,c='green')

#用plot函数绘制折线图,线条颜色设置为绿色

plt.title('Squares',fontsize=24)

#设置图表标题和标题字号

plt.tick_params(axis='both',which='major',labelsize=14)

#设置刻度的字号

plt.xlabel('Numbers',fontsize=14)

#设置x轴标签及其字号

plt.ylabel('Squares',fontsize=14)

#设置y轴标签及其字号

plt.show()

#显示图表

制作出图表

我们希望x轴的刻度是0,1,2,3,4……,y轴的刻度是0,10,20,30……,并且希望两个坐标轴的范围都能再大一点,所以我们需要手动设置。

二、手动设置坐标轴刻度间隔以及刻度范围

import matplotlib.pyplot as plt

from matplotlib.pyplot import MultipleLocator

#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔

x_values=list(range(11))

y_values=[x**2 for x in x_values]

plt.plot(x_values,y_values,c='green')

plt.title('Squares',fontsize=24)

plt.tick_params(axis='both',which='major',labelsize=14)

plt.xlabel('Numbers',fontsize=14)

plt.ylabel('Squares',fontsize=14)

x_major_locator=MultipleLocator(1)

#把x轴的刻度间隔设置为1,并存在变量里

y_major_locator=MultipleLocator(10)

#把y轴的刻度间隔设置为10,并存在变量里

ax=plt.gca()

#ax为两条坐标轴的实例

ax.xaxis.set_major_locator(x_major_locator)

#把x轴的主刻度设置为1的倍数

ax.yaxis.set_major_locator(y_major_locator)

#把y轴的主刻度设置为10的倍数

plt.xlim(-0.5,11)

#把x轴的刻度范围设置为-0.5到11,因为0.5不满一个刻度间隔,所以数字不会显示出来,但是能看到一点空白

plt.ylim(-5,110)

#把y轴的刻度范围设置为-5到110,同理,-5不会标出来,但是能看到一点空白

plt.show()

绘制结果


网页标题:python中gca函数,gcd在python的用法
网站URL:http://csdahua.cn/article/dssgjji.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流