AsyncTask怎么在Android中使用

这篇文章给大家介绍AsyncTask怎么在Android中使用,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

成都创新互联专业为企业提供双峰网站建设、双峰做网站、双峰网站设计、双峰网站制作等企业网站建设、网页设计与制作、双峰企业网站模板建站服务,10年双峰做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

AsyncTask 简单使用

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

 private static final String TAG = "MainActivity";
 private ProgressDialog mDialog;
 private AsyncTask mAsyncTask;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
  super.onCreate(savedInstanceState);
  setContentView(R.layout.activity_main);

  mDialog = new ProgressDialog(this);
  mDialog.setMax(100);
  mDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
  mDialog.setCancelable(false);
  mAsyncTask = new MyAsyncTask();

  findViewById(R.id.tv).setOnClickListener(this);
 }

 @Override
 public void onClick(View view) {
  mAsyncTask.execute();
 }

 private class MyAsyncTask extends AsyncTask {

  @Override
  protected void onPreExecute() {
   mDialog.show();
   Log.e(TAG, Thread.currentThread().getName() + " onPreExecute ");
  }

  @Override
  protected Void doInBackground(Void... params) {

   // 模拟数据的加载,耗时的任务
   for (int i = 0; i < 100; i++) {
    try {
     Thread.sleep(80);
    } catch (InterruptedException e) {
     e.printStackTrace();
    }
    publishProgress(i);
   }

   Log.e(TAG, Thread.currentThread().getName() + " doInBackground ");
   return null;
  }

  @Override
  protected void onProgressUpdate(Integer... values) {
   mDialog.setProgress(values[0]);
   Log.e(TAG, Thread.currentThread().getName() + " onProgressUpdate ");
  }

  @Override
  protected void onPostExecute(Void result) {
   // 进行数据加载完成后的UI操作
   mDialog.dismiss();
   Log.e(TAG, Thread.currentThread().getName() + " onPostExecute ");
  }
 }
}

如以上实例中,当UI线程中需求处理耗时的操作时,我们可以放在AsyncTask的doInBackground方法中执行,这个抽象的类,有几个方法需要我们重新,除了doInBackground,我们可以在onPreExecute中为这个耗时方法进行一些预处理操作,同时我们在onPostExecute中对UI进行更新操作。实例中的publishProgress对应的回调是onProgressUpdate,这样可以实时更新UI,提供更好的用户体验。

AsyncTask 原理

AsyncTask主要有二个部分:一个是与主线的交互,另一个就是线程的管理调度。虽然可能多个AsyncTask的子类的实例,但是AsyncTask的内部Handler和ThreadPoolExecutor都是进程范围内共享的,其都是static的,也即属于类的,类的属性的作用范围是CLASSPATH,因为一个进程一个VM,所以是AsyncTask控制着进程范围内所有的子类实例。

1、与主线程交互

与主线程交互是通过Handler来进行的,因为本文主要探讨AsyncTask在任务调度方面的,所以对于这部分不做细致介绍,感兴趣的朋友可以继续去看AsyncTask的源码部分。

2、线程任务的调度

内部会创建一个进程作用域的线程池来管理要运行的任务,也就就是说当你调用了AsyncTask#execute()后,AsyncTask会把任务交给线程池,由线程池来管理创建Thread和运行Therad。对于内部的线程池不同版本的Android的实现方式是不一样的:

AsyncTask 发展

接下来我们先简单的了解一下AsyncTask的历史

首先在android 3.0之前的版本,ThreadPool的限制是5个,线程的并发量是128个,阻塞队列长度10,也就是说超过138个则会抛出异常。因此我们在使用的时候,一定要主要这部分限制,正确的使用。

到了在Android 3.0之后的,也许是Google也意识到这个问题,对AsyncTask的API做了调整:

· execute()提交的任务,按先后顺序每次只运行一个也就是说它是按提交的次序,每次只启动一个线程执行一个任务,完成之后再执行第二个任务,也就是相当于只有一个后台线程在执行所提交的任务(Executors.newSingleThreadPool() )。

· 新增了接口executeOnExecutor()这个接口允许开发者提供自定义的线程池来运行和调度Thread,如果你想让所有的任务都能并发同时运行,那就创建一个没有限制的线程池(Executors.newCachedThreadPool() ),并提供给AsyncTask。这样这个AsyncTask实例就有了自己的线程池而不必使用AsyncTask默认的。

· 新增了二个预定义的线程池SERIAL_EXECUTOR和THREAD_POOL_EXECUTOR。其实THREAD_POOL_EXECUTOR并不是新增的,之前的就有,只不过之前(Android 2.3)它是AsyncTask私有的,未公开而已。THREAD_POOL_EXECUTOR是一个corePoolSize为5的线程池,也就是说最多只有5个线程同时运行,超过5个的就要等待。所以如果使用executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)就跟2.3版本的AsyncTask.execute()效果是一样的。而SERIAL_EXECUTOR是新增的,它的作用是保证任务执行的顺序,也就是它可以保证提交的任务确实是按照先后顺序执行的。它的内部有一个队列用来保存所提交的任务,保证当前只运行一个,这样就可以保证任务是完全按照顺序执行的,默认的execute()使用的就是这个,也就是executeOnExecutor(AsyncTask.SERIAL_EXECUTOR)与execute()是一样的。

AsyncTask 源码简析

这里我们从AsyncTask的起点开始分析,主要有 execute()executeOnExecutor()

public final AsyncTask execute(Params... params) { 
  return executeOnExecutor(sDefaultExecutor, params); 
} 
public final AsyncTask executeOnExecutor(Executor exec, 
   Params... params) { 
  if (mStatus != Status.PENDING) { 
   switch (mStatus) { 
    case RUNNING: 
     throw new IllegalStateException("Cannot execute task:" 
       + " the task is already running."); 
    case FINISHED: 
     throw new IllegalStateException("Cannot execute task:" 
       + " the task has already been executed " 
       + "(a task can be executed only once)"); 
   } 
  } 
 
  mStatus = Status.RUNNING; 
 
  onPreExecute(); 
 
  mWorker.mParams = params; 
  exec.execute(mFuture); 
 
  return this; 
 }
  1. 从代码中可以看出,execute()其实也是通过执行executeOnExecutor()方法,只是将其中的Executor设置为默认值。

  2. executeOnExecutor()中将当前AsyncTask的状态为RUNNING,上面的switch也可以看出,每个异步任务在完成前只能执行一次。

  3. 接下来就执行了onPreExecute() ,当前依然在UI线程,所以我们可以在其中做一些准备工作。

  4. 将我们传入的参数赋值给了mWorker.mParams

  5. 最后exec.execute(mFuture)

相信大家对代码中出现的mWorker,以及mFuture都会有些困惑。接下来我们来看看mWorker找到这个类:

private static abstract class WorkerRunnable implements Callable { 
  Params[] mParams; 
}

可以看到是Callable的子类,且包含一个mParams用于保存我们传入的参数,下面看初始化mWorker的代码:

  public AsyncTask() { 
  mWorker = new WorkerRunnable() { 
   public Result call() throws Exception { 
    mTaskInvoked.set(true); 
 
    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); 
    //noinspection unchecked 
    return postResult(doInBackground(mParams)); 
   } 
  }; 
 //...
 }

可以看到mWorker在构造方法中完成了初始化,并且因为是一个抽象类,在这里new了一个实现类,实现了call方法,call方法中设置mTaskInvoked=true,且最终调用doInBackground(mParams)方法,并返回Result值作为参数给postResult方法.可以看到我们的doInBackground出现了,下面继续看:

private Result postResult(Result result) { 
  @SuppressWarnings("unchecked") 
  Message message = sHandler.obtainMessage(MESSAGE_POST_RESULT, 
    new AsyncTaskResult(this, result)); 
  message.sendToTarget(); 
  return result; 
}

可以看到postResult中出现了我们熟悉的异步消息机制,传递了一个消息message, message.what为MESSAGE_POST_RESULT;message.object= new AsyncTaskResult(this,result);

private static class AsyncTaskResult { 
  final AsyncTask mTask; 
  final Data[] mData; 
 
  AsyncTaskResult(AsyncTask task, Data... data) { 
   mTask = task; 
   mData = data; 
  } 
 }

AsyncTaskResult就是一个简单的携带参数的对象。

看到这,我相信大家肯定会想到,在某处肯定存在一个sHandler,且复写了其handleMessage方法等待消息的传入,以及消息的处理。

private static final InternalHandler sHandler = new InternalHandler(); 
 private static class InternalHandler extends Handler { 
  @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"}) 
  @Override 
  public void handleMessage(Message msg) { 
   AsyncTaskResult result = (AsyncTaskResult) msg.obj; 
   switch (msg.what) { 
    case MESSAGE_POST_RESULT: 
     // There is only one result 
     result.mTask.finish(result.mData[0]); 
     break; 
    case MESSAGE_POST_PROGRESS: 
     result.mTask.onProgressUpdate(result.mData); 
     break; 
   } 
  } 
}

这里出现了我们的handleMessage,可以看到,在接收到MESSAGE_POST_RESULT消息时,执行了result.mTask.finish(result.mData[0]);其实就是我们的AsyncTask.this.finish(result) ,于是看finish方法

private void finish(Result result) { 
  if (isCancelled()) { 
   onCancelled(result); 
  } else { 
   onPostExecute(result); 
  } 
  mStatus = Status.FINISHED; 
 }

可以看到,如果我们调用了cancel()则执行onCancelled回调;正常执行的情况下调用我们的onPostExecute(result);主要这里的调用是在handler的handleMessage中,所以是在UI线程中。最后将状态置为FINISHED。

mWoker看完了,应该到我们的mFuture了,依然实在构造方法中完成mFuture的初始化,将mWorker作为参数,复写了其done方法。

public AsyncTask() { 
 ... 
  mFuture = new FutureTask(mWorker) { 
   @Override 
   protected void done() { 
    try { 
     postResultIfNotInvoked(get()); 
    } catch (InterruptedException e) { 
     android.util.Log.w(LOG_TAG, e); 
    } catch (ExecutionException e) { 
     throw new RuntimeException("An error occured while executing doInBackground()", 
       e.getCause()); 
    } catch (CancellationException e) { 
     postResultIfNotInvoked(null); 
    } 
   } 
  }; 
}

任务执行结束会调用:postResultIfNotInvoked(get());get()表示获取mWorker的call的返回值,即Result.然后看postResultIfNotInvoked方法

private void postResultIfNotInvoked(Result result) { 
    final boolean wasTaskInvoked = mTaskInvoked.get(); 
    if (!wasTaskInvoked) { 
      postResult(result); 
    } 
}

如果mTaskInvoked不为true,则执行postResult;但是在mWorker初始化时就已经将mTaskInvoked为true,所以一般这个postResult执行不到。好了,到了这里,已经介绍完了execute方法中出现了mWorker和mFurture,不过这里一直是初始化这两个对象的代码,并没有真正的执行。下面我们看真正调用执行的地方。execute方法中的:还记得上面的execute中的:exec.execute(mFuture)

exec为executeOnExecutor(sDefaultExecutor, params)中的sDefaultExecutor

下面看这个sDefaultExecutor

private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR; 
public static final Executor SERIAL_EXECUTOR = new SerialExecutor(); 
private static class SerialExecutor implements Executor { 
  final ArrayDeque mTasks = new ArrayDeque(); 
  Runnable mActive; 
  public synchronized void execute(final Runnable r) { 
   mTasks.offer(new Runnable() { 
    public void run() { 
     try { 
      r.run(); 
     } finally { 
      scheduleNext(); 
     } 
    } 
   }); 
   if (mActive == null) { 
    scheduleNext(); 
   } 
  } 
  protected synchronized void scheduleNext() { 
   if ((mActive = mTasks.poll()) != null) { 
    THREAD_POOL_EXECUTOR.execute(mActive); 
   } 
  } 
}

可以看到sDefaultExecutor其实为SerialExecutor的一个实例,其内部维持一个任务队列;直接看其execute(Runnable runnable)方法,将runnable放入mTasks队尾;再判断当前mActive是否为空,为空则调用scheduleNext。方法scheduleNext,则直接取出任务队列中的队首任务,如果不为null则传入THREAD_POOL_EXECUTOR进行执行。下面看THREAD_POOL_EXECUTOR为何方神圣:

public static final Executor THREAD_POOL_EXECUTOR 
   =new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE, 
     TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);

可以看到就是一个自己设置参数的线程池,参数为:

private static final int CORE_POOL_SIZE = 5; 
private static final int MAXIMUM_POOL_SIZE = 128; 
private static final int KEEP_ALIVE = 1; 
private static final ThreadFactory sThreadFactory = new ThreadFactory() { 
private final AtomicInteger mCount = new AtomicInteger(1); 
public Thread newThread(Runnable r) { 
  return new Thread(r, "AsyncTask #" + mCount.getAndIncrement()); 
 } 
 }; 
private static final BlockingQueue sPoolWorkQueue = 
   new LinkedBlockingQueue(10);

看到这里,大家可能会认为,背后原来有一个线程池,且最大支持128的线程并发,加上长度为10的阻塞队列,可能会觉得就是在快速调用138个以内的AsyncTask子类的execute方法不会出现问题,而大于138则会抛出异常。其实不是这样的,我们再仔细看一下代码,回顾一下sDefaultExecutor,真正在execute()中调用的为sDefaultExecutor.execute

private static class SerialExecutor implements Executor { 
  final ArrayDeque mTasks = new ArrayDeque(); 
  Runnable mActive; 
  public synchronized void execute(final Runnable r) { 
   mTasks.offer(new Runnable() { 
    public void run() { 
     try { 
      r.run(); 
     } finally { 
      scheduleNext(); 
     } 
    } 
   }); 
   if (mActive == null) { 
    scheduleNext(); 
   } 
  } 
  protected synchronized void scheduleNext() { 
   if ((mActive = mTasks.poll()) != null) { 
    THREAD_POOL_EXECUTOR.execute(mActive); 
   } 
  } 
}

可以看到,如果此时有10个任务同时调用execute(s synchronized)方法,第一个任务入队,然后在mActive = mTasks.poll()) != null被取出,并且赋值给mActivte,然后交给线程池去执行。然后第二个任务入队,但是此时mActive并不为null,并不会执行scheduleNext();所以如果第一个任务比较慢,10个任务都会进入队列等待;真正执行下一个任务的时机是,线程池执行完成第一个任务以后,调用Runnable中的finally代码块中的scheduleNext,所以虽然内部有一个线程池,其实调用的过程还是线性的。一个接着一个的执行,相当于单线程。

总结:

AsyncTask在并发执行多个任务时发生异常。其实还是存在的,在3.0以前的系统中还是会以支持多线程并发的方式执行,支持并发数也是我们上面所计算的128,阻塞队列可以存放10个;也就是同时执行138个任务是没有问题的;而超过138会马上出现java.util.concurrent.RejectedExecutionException;而在在3.0以上包括3.0的系统中会为单线程执行(即我们上面代码的分析)

Android是什么

Android是一种基于Linux内核的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由美国Google公司和开放手机联盟领导及开发。

关于AsyncTask怎么在Android中使用就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。


标题名称:AsyncTask怎么在Android中使用
链接URL:http://csdahua.cn/article/gddggj.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流