c#如何实现车辆的轮廓识别

这篇文章主要为大家展示了“c#如何实现车辆的轮廓识别”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“c#如何实现车辆的轮廓识别”这篇文章吧。

十多年的宁江网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整宁江建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“宁江网站设计”,“宁江网站推广”以来,每个客户项目都认真落实执行。

场景

    实现了车辆的轮廓识别,并且已经提取轮廓的最小矩形范围,现在需要知道车尾离矩形最近的两个点,可能有点大材小用

代码

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include

using namespace cv;

using namespace std;

void Dilate( InputArray src, OutputArray dst)

{

  int dilation_type = MORPH_RECT;

  int dilation_size = 10;

  Mat dielem = getStructuringElement( dilation_type,

    Size( 2*dilation_size + 1, 2*dilation_size+1 ),

    Point( dilation_size, dilation_size ) );

  ///膨胀操作

  dilate( src, dst, dielem );

}

/*

该函数主要是捕获图片中完整出现轮廓的车辆,判断条件为

车辆的轮廓的Y坐标不能大于图片的长度,其次过滤掉面积过小

的轮廓,很可能是车镜或者帧间差分将车辆拆分成两段的误差

*/

void CaptureCompleteVehicle(Mat &srcMat, Mat &grayMat)

{

  vector> contours;  

  vector hierarchy; 

  findContours(grayMat, contours,hierarchy,RETR_EXTERNAL,CHAIN_APPROX_NONE,Point());  

  Mat dstMat=Mat::zeros(grayMat.size(),CV_8UC1); 

  Mat contourMat;

  srcMat.copyTo(contourMat);

  int picHeight = grayMat.size().height;

  bool bTouchBotton = false;

  bool bTouchTop    = false;

  vector mu(contours.size());

  for (int i=0; i

  {

    mu[i] = moments(contours[i], false);

  }

  vector mc(contours.size());

  for (int i=0; i

  {

    mc[i] = Point2d(mu[i].m10 / mu[i].m00, mu[i].m01 / mu[i].m00);

  }

  for(int i=0; i

  {  

    if (contourArea(contours[i]) < 10000)  continue;

    bTouchBotton = false;

    bTouchTop    = false;

    for (int k=0; k

    {

      Point2f pos = contours[i][k];

      if ((pos.y +10) > picHeight) 

      {

        bTouchBotton = true;

        break;

      }

      if (pos.y == 0)

      {

        bTouchTop = true;

        break;

      }

    }

    if (bTouchBotton || bTouchTop) continue;

    drawContours(dstMat, contours, i, Scalar(255, 0, 0), 1, 8, hierarchy);  

    RotatedRect rect=minAreaRect(contours[i]); 

    Point2f P[4];  

    rect.points(P);  

    int leftBottonIndex = 0;

    for(int j=0; j<=3; j++)  

    {  

      line(contourMat, P[j], P[(j+1)%4], Scalar(255, 0, 0), 2); 

      if ((P[j].x < mc[i].x) && (P[j].y > mc[i].y))

      {

        leftBottonIndex = j;

      }

    } 

    cv::Rect re(P[leftBottonIndex].x - 20, P[leftBottonIndex].y - 20 , 40, 40);

    rectangle(contourMat, re, Scalar(0, 255, 0), 4);

    circle(contourMat, mc[i], 5, Scalar(0, 0, 255), -1, 8, 0);

  }  

  imshow("NewAreaRect", contourMat);

}

int main(int argc,char *argv[])

{

  VideoCapture videoCap("E:/smoky-cars/positive/大庆东路与水机路交叉口(东北)_冀BU0157_02_141502_01_3_50.wh364");

  if(!videoCap.isOpened())  return -1;

  double videoFPS=videoCap.get(CV_CAP_PROP_FPS);  //获取帧率

  double videoPause=1000/videoFPS;

  Mat framePrePre; //上上一帧

  Mat framePre; //上一帧

  Mat frameNow; //当前帧

  Mat frameDet; //运动物体

  videoCap>>framePrePre;

  videoCap>>framePre;

  cvtColor(framePrePre,framePrePre,CV_RGB2GRAY);

  cvtColor(framePre,framePre,CV_RGB2GRAY);

  int save=0;

  while(true)

  {

    videoCap>>frameNow;

    if(frameNow.empty()||waitKey(videoPause)==27) break;

    cvtColor(frameNow,frameNow,CV_RGB2GRAY);

    Mat Det1;

    Mat Det2;

    absdiff(framePrePre,framePre,Det1);  //帧差1

    absdiff(framePre,frameNow,Det2);     //帧差2

    threshold(Det1,Det1,0,255,CV_THRESH_OTSU);  //自适应阈值化

    threshold(Det2,Det2,0,255,CV_THRESH_OTSU);

    Mat element=getStructuringElement(0,Size(3,3));  //膨胀核

    dilate(Det1,Det1,element);    //膨胀

    dilate(Det2,Det2,element);

    bitwise_and(Det1,Det2,frameDet);

    framePrePre=framePre;

    framePre=frameNow;

    Dilate(frameDet, frameDet);

    CaptureCompleteVehicle(frameNow, frameDet); 

    waitKey(1000);

  }

  return 0;

}

以上是“c#如何实现车辆的轮廓识别”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网页标题:c#如何实现车辆的轮廓识别
URL链接:http://csdahua.cn/article/ggpipo.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流