扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
这篇文章主要介绍“python数据挖掘中比较实用的几个特征选择方法”,在日常操作中,相信很多人在python数据挖掘中比较实用的几个特征选择方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python数据挖掘中比较实用的几个特征选择方法”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
成都创新互联公司主要从事网站建设、成都网站制作、网页设计、企业做网站、公司建网站等业务。立足成都服务泗水,十载网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:13518219792
对于从事数据分析、数据挖掘的小伙伴来说,特征选择是绕不开的话题,是数据挖掘过程中不可或缺的环节。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。
特征选择作用
减少特征数量、降维,使模型泛化能力更强,减少过拟合
增强对特征和特征值之间的理解
特征选择方法介绍
1.特征重要性
在特征的选择过程中,学习器是树模型的话,可以根据特征的重要性来筛选有效的特征,在sklearn中,GBDT和RF的特征重要性计算方法是相同的,都是基于单棵树计算每个特征的重要性,探究每个特征在每棵树上做了多少的贡献,再取个平均值。单棵树上特征的重要性定义为:特征在所有非叶节在分裂时加权不纯度的减少,减少的越多说明特征越重要
import numpy as npfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.externals.six import StringIOfrom sklearn import treeimport pydotplusclf = DecisionTreeClassifier()x = [[1,1,1,1,1,2,2,2,2,2,3,3,3,3,3], [1,1,2,2,1,1,1,2,1,1,1,1,2,2,1], [1,1,1,2,1,1,1,2,2,2,2,2,1,1,1], [1,2,2,1,1,1,2,2,3,3,3,2,2,3,1] ]y = [1,1,2,2,1,1,1,2,2,2,2,2,2,2,1]x = np.array(x)x = np.transpose(x)clf.fit(x,y)print(clf.feature_importances_)feature_name = ['A1','A2','A3','A4']target_name = ['1','2']dot_data = StringIO()tree.export_graphviz(clf,out_file = dot_data,feature_names=feature_name, class_names=target_name,filled=True,rounded=True, special_characters=True)graph = pydotplus.graph_from_dot_data(dot_data.getvalue())graph.write_pdf("Tree.pdf")
2.回归模型的系数
越是重要的特征在模型中对应的系数就会越大,而跟输出变量越是无关的特征对应的系数就会越接近于0。在噪音不多的数据上,或者是数据量远远大于特征数的数据上,如果特征之间相对来说是比较独立的,那么即便是运用最简单的线性回归模型也一样能取得非常好的效果。
from sklearn.linear_model import LinearRegression
import numpy as np
np.random.seed(0)
size = 5000
#A dataset with 3 features
X = np.random.normal(0, 1, (size, 3))
#Y = X0 + 2*X1 + noise
Y = X[:,0] + 2*X[:,1] + np.random.normal(0, 2, size)
lr = LinearRegression()
lr.fit(X, Y)
#A helper method for pretty-printing linear models
def pretty_print_linear(coefs, names = None, sort = False):
if names == None:
names = ["X%s" % x for x in range(len(coefs))]
lst = zip(coefs, names)
if sort:
lst = sorted(lst, key = lambda x:-np.abs(x[0]))
return " + ".join("%s * %s" % (round(coef, 3), name)
for coef, name in lst)
print "Linear model:", pretty_print_linear(lr.coef_)
from sklearn.cross_validation import ShuffleSplit
from sklearn.metrics import r2_score
from collections import defaultdict
X = boston["data"]
Y = boston["target"]
rf = RandomForestRegressor()
scores = defaultdict(list)
#crossvalidate the scores on a number of different random splits of the data
for train_idx, test_idx in ShuffleSplit(len(X), 100, .3):
X_train, X_test = X[train_idx], X[test_idx]
Y_train, Y_test = Y[train_idx], Y[test_idx]
r = rf.fit(X_train, Y_train)
acc = r2_score(Y_test, rf.predict(X_test))
for i in range(X.shape[1]):
X_t = X_test.copy()
np.random.shuffle(X_t[:, i])
shuff_acc = r2_score(Y_test, rf.predict(X_t))
scores[names[i]].append((acc-shuff_acc)/acc)
print "Features sorted by their score:"
print sorted([(round(np.mean(score), 4), feat) for
feat, score in scores.items()], reverse=True)
到此,关于“python数据挖掘中比较实用的几个特征选择方法”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流