tvm学习笔记之编译安装

1、编译需要打开的选项:

创新互联建站是一家集网站建设,观山湖企业网站建设,观山湖品牌网站建设,网站定制,观山湖网站建设报价,网络营销,网络优化,观山湖网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

set(USE_SORT ON)

参考资料:

discuss.tvm.ai/t/solved-cant-run-tutorials-ssd-model-on-my-own-cpu/2005

2、编译gpu模型:

编译时,打开编译cuda选项:tvm_option(USE_CUDA "Build with CUDA" ON)

在jetson nano上编译GPU版本时,需要将cuda加入到环境变量里面去:

export CUBA_HOME=/usr/local/cuda-10.0:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH

export PATH=/usr/local/cuda-10.0/bin:$PATH

将target = tvm.target.create("llvm -mcpu=haswell")替换为:target = "cuda"

参考资料:

github.com/

3、Andorid编译

cp make/config.mk

APP_ABI = armeabi-v7a

./make_standalone_toolchain.py –arch arm --api 23 --install-dir /opt/android-toolchain-armv7 -mfloat-abi=soft

参考资料:

discuss.tvm.ai

4、LLVM 在windows上编译

1)下载LLVM源码

首先下载LLVM源码,下载地址为:

github.com/MirrorYuChen/llvm-project/tree/release/6.x

这里对应LLVM版本为6.x,后面需要用LLD工具,这个源码里面就自带有,然后在LLVM文件夹下面新建一个build文件夹,并在此文件夹路径下打开cmd窗口,输入如下命令:

cmake -G "Visual Studio 15 2017 Win64" .. -Thost=x64 -DLLVM_ENABLE_PROJECTS=lld

打开生成的llvm.sln项目,切换到release x64模式编译,大约需要1小时时间编译完成,并运行install。

Jetson nano:

>> git clone https://github.com/llvm/llvm-project llvm-project

>> cd llvm-project

>> mkdir build

>> cd build

>> cmake -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_PROJECTS=lld -DCMAKE_INSTALL_PREFIX=/usr/local ../../llvm-project/llvm

>> make -j3 && make install

2)下载tvm源码

git clone --recursive https://github.com/dmlc/tvm/

在tvm项目路径下新建build子文件夹,并在当前路径下新建一个bash.sh文件,文件内容为:

cmake -G "Visual Studio 15 2017 Win64" -DCMAKE_BUILD_TYPE=Release \

-DCMAKE_CONFIGURATION_TYPES="Release" .. \

-DLLVM_DIR=D:\softW\LLVM\lib\cmake\llvm

后面LLVM路径对应到刚install生成的LLVM路径,打开生成的tvm.sln项目,编译运行。

3)安装

先新建一个conda环境变量:

conda create -n tf python==3.5

激活环境:

activate tf

分别安装tensorflow和mxnet

pip install tensorflow

pip install mxnet

分别进入tvm、topi、nnvm文件夹下,运行下面命令进行安装

python setup.py install

安装完成之后,可以进入tvm的tutorials子文件夹下,运行相关例程。

这里是一个ssd运行例程:

测试代码为:

#!/usr/bin/python3

import os

import tvm

import numpy as np

import time

from tvm.contrib.download import download

from tvm.contrib import graph_runtime

current_milli_time = lambda: int(round(time.time() * 1000))

test_image = "dog.jpg"

dshape = (1, 3, 512, 512)

#dshape = (1, 3, 608, 608)

dtype = "float32"

image_url = "/upload/otherpic49/113691.jpg"

download(image_url, test_image)

# Preprocess image

import cv2

test_image_path = test_image

image = cv2.imread(test_image_path)

img_data = cv2.resize(image, (dshape[2], dshape[3]))

img_data = img_data[:, :, (2, 1, 0)].astype(np.float32)

img_data -= np.array([123, 117, 104])

img_data = np.transpose(np.array(img_data), (2, 0, 1))

ctx = tvm.cpu()

target="llvm"

#base = "deploy_ssd_resnet50_512/{}/".format(target)

#base = "deploy_ssd_inceptionv3_512/{}/".format(target)

#base = "deploy_ssd_mobilenet_512/{}/".format(target)

#base = "deploy_ssd_mobilenet_608/{}/".format(target)

#base = "cpu-model/"

base = "./"

path_lib = base + "model.so"

path_graph = base + "model.json"

path_param = base + "model.params"

graph = open(path_graph).read()

params = bytearray(open(path_param, "rb").read())

lib = tvm.module.load(path_lib)

class_names = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair",

"cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant",

"sheep", "sofa", "train", "tvmonitor"]

######################################################################

# Create TVM runtime and do inference

# Build TVM runtime

m = graph_runtime.create(graph, lib, ctx)

m.load_params(params)

input_data = tvm.nd.array(img_data.astype(dtype))

# dryrun

m.run(data = input_data)

# execute

t1 = current_milli_time()

m.run(data = input_data)

# get outputs

tvm_output = m.get_output(0)

t2 = current_milli_time()

print(base)

print("time: {} ms".format(t2 - t1))

out = tvm_output.asnumpy()[0]

i = 0无锡×××医院 https://yyk.familydoctor.com.cn/20612/

for det in out:

cid = int(det[0])

if cid < 0:

continue

score = det[1]

if score < 0.5:

continue

i += 1

print(i, class_names[cid], det)

######################################################################

# Display result

def display(img, out, thresh=0.5):

import random

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['figure.figsize'] = (10, 10)

pens = dict()

plt.clf()

plt.imshow(img)

for det in out:

cid = int(det[0])

if cid < 0:

continue

score = det[1]

if score < thresh:

continue

if cid not in pens:

pens[cid] = (random.random(), random.random(), random.random())

scales = [img.shape[1], img.shape[0]] * 2

xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)]

rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False,

edgecolor=pens[cid], linewidth=3)

plt.gca().add_patch(rect)

text = class_names[cid]

plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score),

bbox=dict(facecolor=pens[cid], alpha=0.5),

fontsize=12, color='white')

plt.show()

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

display(image, tvm_output.asnumpy()[0], thresh=0.45)

代码来自于github


本文题目:tvm学习笔记之编译安装
浏览地址:http://csdahua.cn/article/gohcdd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流