Spark1.0.0如何实现伪分布安装

这篇文章主要介绍了Spark1.0.0如何实现伪分布安装,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

创新互联主要从事成都网站建设、成都网站制作、网页设计、企业做网站、公司建网站等业务。立足成都服务扎赉特,10年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:13518219792

一、下载须知

软件准备:

spark-1.0.0-bin-hadoop1.tgz   下载地址:spark1.0.0

scala-2.10.4.tgz    下载下载:Scala 2.10.4

hadoop-1.2.1-bin.tar.gz   下载地址:hadoop-1.2.1-bin.tar.gz

jdk-7u60-linux-i586.tar.gz  下载地址:去官网下载就行,这个1.7.x都行

二、安装步骤

hadoop-1.2.1安装步骤,请看: http://my.oschina.net/dataRunner/blog/292584

1.解压:

tar -zxvf scala-2.10.4.tgz 
mv  scala-2.10.4 scala

tar -zxvf spark-1.0.0-bin-hadoop1.tgz 
mv spark-1.0.0-bin-hadoop1 spark

2. 配置环境变量:

vim /etc/profile   (在最后一行加入以下内容就行)

export HADOOP_HOME_WARN_SUPPRESS=1

export JAVA_HOME=/home/big_data/jdk
export JRE_HOME=${JAVA_HOME}/jre
export CLASS_PATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib

export HADOOP_HOME=/home/big_data/hadoop
export HIVE_HOME=/home/big_data/hive
export SCALA_HOME=/home/big_data/scala
export SPARK_HOME=/home/big_data/spark

export PATH=.:$SPARK_HOME/bin:$SCALA_HOME/bin:$HIVE_HOME/bin:$HADOOP_HOME/bin:$JAVA_HOME/bin:$PATH

3.修改spark的spark-env.sh文件

cd spark/conf
cp spark-env.sh.template  spark-env.sh

vim spark-env.sh  (在最后一行加入以下内容就行)
export JAVA_HOME=/home/big_data/jdk
export SCALA_HOME=/home/big_data/scala

export SPARK_MASTER_IP=192.168.80.100
export SPARK_WORKER_MEMORY=200m

export HADOOP_CONF_DIR=/home/big_data/hadoop/conf

然后就配置完毕勒!!!(就这么简单,艹,很多人都知道,但是共享的人太少勒)

三、测试步骤

hadoop-1.2.1测试步骤,请看: http://my.oschina.net/dataRunner/blog/292584

1.验证scala

[root@master ~]# scala -version
Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL
[root@master ~]# 
[root@master big_data]# scala
Welcome to Scala version 2.10.4 (Java HotSpot(TM) Client VM, Java 1.7.0_60).
Type in expressions to have them evaluated.
Type :help for more information.

scala> 1+1
res0: Int = 2

scala> :q

2.验证spark  (先启动hadoop-dfs.sh)

[root@master big_data]# cd spark
[root@master spark]# cd sbin/start-all.sh
( 也可以分别启动
[root@master spark]$ sbin/start-master.sh
可以通过 http://master:8080/ 看到对应界面
[root@master spark]$ sbin/start-slaves.sh park://master:7077
可以通过 http://master:8081/ 看到对应界面
)
[root@master spark]# jps
[root@master ~]# jps
4629 NameNode  (hadoop的)
5007 Master   (spark的)
6150 Jps
4832 SecondaryNameNode  (hadoop的)
5107 Worker  (spark的)
4734 DataNode  (hadoop的)

可以通过 http://192.168.80.100:8080/ 看到对应界面   

[root@master big_data]# spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
14/07/20 21:41:04 INFO spark.SecurityManager: Changing view acls to: root
14/07/20 21:41:04 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root)
14/07/20 21:41:04 INFO spark.HttpServer: Starting HTTP Server
14/07/20 21:41:05 INFO server.Server: jetty-8.y.z-SNAPSHOT
14/07/20 21:41:05 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:43343
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.0.0
      /_/

Using Scala version 2.10.4 (Java HotSpot(TM) Client VM, Java 1.7.0_60)

。。。


scala> 
可以通过 http://192.168.80.100:4040/ 看到对应界面  

(随便上传一个文件,里面随便一些英文单词,到hdfs上面) 
scala> val file=sc.textFile("hdfs://master:9000/input")
14/07/20 21:51:05 INFO storage.MemoryStore: ensureFreeSpace(608) called with curMem=31527, maxMem=311387750
14/07/20 21:51:05 INFO storage.MemoryStore: Block broadcast_1 stored as values to memory (estimated size 608.0 B, free 296.9 MB)
file: org.apache.spark.rdd.RDD[String] = MappedRDD[5] at textFile at :12

scala> val count=file.flatMap(line=>line.split(" ")).map(word=>(word,1)).reduceByKey(_+_)
14/07/20 21:51:14 INFO mapred.FileInputFormat: Total input paths to process : 1
count: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[10] at reduceByKey at :14

scala> count.collect()
14/07/20 21:51:48 INFO spark.SparkContext: Job finished: collect at :17, took 2.482381535 s
res0: Array[(String, Int)] = Array((previously-registered,1), (this,3), (Spark,1), (it,3), (original,1), (than,1), (its,1), (previously,1), (have,2), (upon,1), (order,2), (whenever,1), (it’s,1), (could,3), (Configuration,1), (Master's,1), (SPARK_DAEMON_JAVA_OPTS,1), (This,2), (which,2), (applications,2), (register,,1), (doing,1), (for,3), (just,2), (used,1), (any,1), (go,1), ((equivalent,1), (Master,4), (killing,1), (time,1), (availability,,1), (stop-master.sh,1), (process.,1), (Future,1), (node,1), (the,9), (Workers,1), (however,,1), (up,2), (Details,1), (not,3), (recovered,1), (process,1), (enable,3), (spark-env,1), (enough,1), (can,4), (if,3), (While,2), (provided,1), (be,5), (mode.,1), (minute,1), (When,1), (all,2), (written,1), (store,1), (enter,1), (then,1), (as,1), (officially,1)...
scala> 
scala> count.saveAsTextFile("hdfs://master:9000/output")   (结果保存到hdfs上的/output文件夹下)

scala> :q
Stopping spark context.


[root@master ~]# hadoop fs -ls /       
Found 3 items
drwxr-xr-x   - root supergroup          0 2014-07-18 21:10 /home
-rw-r--r--   1 root supergroup       1722 2014-07-18 06:18 /input
drwxr-xr-x   - root supergroup          0 2014-07-20 21:53 /output
[root@master ~]# 
[root@master ~]# hadoop fs -cat /output/p*
。。。
(mount,1)
(production-level,1)
(recovery).,1)
(Workers/applications,1)
(perspective.,1)
(so,2)
(and,1)
(ZooKeeper,2)
(System,1)
(needs,1)
(property       Meaning,1)
(solution,1)
(seems,1)

感谢你能够认真阅读完这篇文章,希望小编分享的“Spark1.0.0如何实现伪分布安装”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!


分享题目:Spark1.0.0如何实现伪分布安装
路径分享:http://csdahua.cn/article/gsdosp.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流