spark读取kafka数据流-创新互联

spark读取kafka数据流提供了两种方式createDstream和createDirectStream。

两者区别如下:

1、KafkaUtils.createDstream

构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic,partitions] )
使用了receivers来接收数据,利用的是Kafka高层次的消费者api,对于所有的receivers接收到的数据将会保存在Spark executors中,然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,该日志存储在HDFS上
A、创建一个receiver来对kafka进行定时拉取数据,ssc的rdd分区和kafka的topic分区不是一个概念,故如果增加特定主体分区数仅仅是增加一个receiver中消费topic的线程数,并不增加spark的并行处理数据数量
B、对于不同的group和topic可以使用多个receivers创建不同的DStream
C、如果启用了WAL,需要设置存储级别,即KafkaUtils.createStream(….,StorageLevel.MEMORY_AND_DISK_SER)

成都创新互联是一家专注于网站建设、成都网站设计内蒙古服务器托管的网络公司,有着丰富的建站经验和案例。

2.KafkaUtils.createDirectStream

区别Receiver接收数据,这种方式定期地从kafka的topic+partition中查询最新的偏移量,再根据偏移量范围在每个batch里面处理数据,使用的是kafka的简单消费者api
优点:
A、 简化并行,不需要多个kafka输入流,该方法将会创建和kafka分区一样的rdd个数,而且会从kafka并行读取。
B、高效,这种方式并不需要WAL,WAL模式需要对数据复制两次,第一次是被kafka复制,另一次是写到wal中
C、恰好一次语义(Exactly-once-semantics),传统的读取kafka数据是通过kafka高层次api把偏移量写入zookeeper中,存在数据丢失的可能性是zookeeper中和ssc的偏移量不一致。EOS通过实现kafka低层次api,偏移量仅仅被ssc保存在checkpoint中,消除了zk和ssc偏移量不一致的问题。缺点是无法使用基于zookeeper的kafka监控工具

public void adclick(){

SparkConf conf = new SparkConf()

.setAppName("")

.setMaster("");

JavaStreamingContext jssc = new JavaStreamingContext(conf,Durations.seconds(10));

jssc.checkpoint("");

Map kafkaParams = new HashMap();

kafkaParams.put("metadata.broker.list", ConfigurationManager.getProperty("metadata.broker.list"));

String kafkaTopics = ConfigurationManager.getProperty("kafkaTopics");

String[] kafkaTopicsSplits = kafkaTopics.split(",");

Set tops = new HashSet();

for(String xx:kafkaTopicsSplits){

tops.add(xx);

}

JavaPairInputDStream adRealTimeDStream = KafkaUtils.

createDirectStream(

jssc,

String.class,

String.class,

StringDecoder.class,

StringDecoder.class,

kafkaParams,

tops);

jssc.start();

jssc.awaitTermination();

jssc.close();

}

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前题目:spark读取kafka数据流-创新互联
URL地址:http://csdahua.cn/article/gsjid.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流