grad函数python,gradf

python做逻辑回归 怎么把导入的数据分成x,y

简介

创新互联服务项目包括谯城网站建设、谯城网站制作、谯城网页制作以及谯城网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,谯城网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到谯城省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

本例子是通过对一组逻辑回归映射进行输出,使得网络的权重和偏置达到最理想状态,最后再进行预测。其中,使用GD算法对参数进行更新,损耗函数采取交叉商来表示,一共训练10000次。

2.python代码

#!/usr/bin/python

import numpy

import theano

import theano.tensor as T

rng=numpy.random

N=400

feats=784

# D[0]:generate rand numbers of size N,element between (0,1)

# D[1]:generate rand int number of size N,0 or 1

D=(rng.randn(N,feats),rng.randint(size=N,low=0,high=2))

training_steps=10000

# declare symbolic variables

x=T.matrix('x')

y=T.vector('y')

w=theano.shared(rng.randn(feats),name='w') # w is shared for every input

b=theano.shared(0.,name='b') # b is shared too.

print('Initial model:')

print(w.get_value())

print(b.get_value())

# construct theano expressions,symbolic

p_1=1/(1+T.exp(-T.dot(x,w)-b)) # sigmoid function,probability of target being 1

prediction=p_10.5

xent=-y*T.log(p_1)-(1-y)*T.log(1-p_1) # cross entropy

cost=xent.mean()+0.01*(w**2).sum() # cost function to update parameters

gw,gb=T.grad(cost,[w,b]) # stochastic gradient descending algorithm

#compile

train=theano.function(inputs=[x,y],outputs=[prediction,xent],updates=((w,w-0.1*gw),(b,b-0.1*gb)))

predict=theano.function(inputs=[x],outputs=prediction)

# train

for i in range(training_steps):

pred,err=train(D[0],D[1])

print('Final model:')

print(w.get_value())

print(b.get_value())

print('target values for D:')

print(D[1])

print('prediction on D:')

print(predict(D[0]))

print('newly generated data for test:')

test_input=rng.randn(30,feats)

print('result:')

print(predict(test_input))

3.程序解读

如上面所示,首先导入所需的库,theano是一个用于科学计算的库。然后这里我们随机产生一个输入矩阵,大小为400*784的随机数,随机产生一个输出向量大小为400,输出向量为二值的。因此,称为逻辑回归。

然后初始化权重和偏置,它们均为共享变量(shared),其中权重初始化为较小的数,偏置初始化为0,并且打印它们。

这里我们只构建一层网络结构,使用的激活函数为logistic sigmoid function,对输入量乘以权重并考虑偏置以后就可以算出输入的激活值,该值在(0,1)之间,以0.5为界限进行二值化,然后算出交叉商和损耗函数,其中交叉商是代表了我们的激活值与实际理论值的偏离程度。接着我们使用cost分别对w,b进行求解偏导,以上均为符号表达式运算。

接着我们使用theano.function进行编译优化,提高计算效率。得到train函数和predict函数,分别进行训练和预测。

接着,我们对数据进行10000次的训练,每次训练都会按照GD算法进行更新参数,最后我们得到了想要的模型,产生一组新的输入,即可进行预测。

grad是什么意思啊(数学类)

“梯度”的意思!对与一个标量来说,它的梯度等于:分别对x、y、z求偏导,最后得到一个矢量!

一文搞懂梯度下降&反向传播

如果把神经网络模型比作一个黑箱,把模型参数比作黑箱上面一个个小旋钮,那么根据通用近似理论(universal approximation theorem),只要黑箱上的旋钮数量足够多,而且每个旋钮都被调节到合适的位置,那这个模型就可以实现近乎任意功能(可以逼近任意的数学模型)。

显然,这些旋钮(参数)不是由人工调节的,所谓的机器学习,就是通过程序来自动调节这些参数。神经网络不仅参数众多(少则十几万,多则上亿),而且网络是由线性层和非线性层交替叠加而成,上层参数的变化会对下层的输出产生非线性的影响,因此,早期的神经网络流派一度无法往多层方向发展,因为他们找不到能用于任意多层网络的、简洁的自动调节参数的方法。

直到上世纪80年代,祖师爷辛顿发明了反向传播算法,用输出误差的均方差(就是loss值)一层一层递进地反馈到各层神经网络,用梯度下降法来调节每层网络的参数。至此,神经网络才得以开始它的深度之旅。

本文用python自己动手实现梯度下降和反向传播算法。 请点击这里 到Github上查看源码。

梯度下降法是一种将输出误差反馈到神经网络并自动调节参数的方法,它通过计算输出误差的loss值( J )对参数 W 的导数,并沿着导数的反方向来调节 W ,经过多次这样的操作,就能将输出误差减小到最小值,即曲线的最低点。

虽然Tensorflow、Pytorch这些框架都实现了自动求导的功能,但为了彻底理解参数调节的过程,还是有必要自己动手实现梯度下降和反向传播算法。我相信你和我一样,已经忘了之前学的微积分知识,因此,到可汗学院复习下 Calculus

和 Multivariable Calculus 是个不错的方法,或是拜读 这篇关于神经网络矩阵微积分的文章 。

Figure2是求导的基本公式,其中最重要的是 Chain Rule ,它通过引入中间变量,将“ y 对 x 求导”的过程转换为“ y 对中间变量 u 求导,再乘以 u 对 x 求导”,这样就将一个复杂的函数链求导简化为多个简单函数求导。

如果你不想涉及这些求导的细节,可以跳过具体的计算,领会其思想就好。

对于神经网络模型: Linear - ReLu - Linear - MSE(Loss function) 来说,反向传播就是根据链式法则对 求导,用输出误差的均方差(MSE)对模型的输出求导,并将导数传回上一层神经网络,用于它们来对 w 、 b 和 x (上上层的输出)求导,再将 x 的导数传回到它的上一层神经网络,由此将输出误差的均方差通过递进的方式反馈到各神经网络层。

对于 求导的第一步是为这个函数链引入中间变量:

接着第二步是对各中间变量求导,最后才是将这些导数乘起来。

首先,反向传播的起点是对loss function求导,即 。 :

mse_grad()之所以用unsqueeze(-1)给导数增加一个维度,是为了让导数的shape和tensor shape保持一致。

linear层的反向传播是对 求导,它也是一个函数链,也要先对中间变量求导再将所有导数相乘:

这些中间变量的导数分别是:

对向量 求导,指的是对向量所有的标量求偏导( ),即: ,这个横向量也称为y的梯度。

这里 ,是一个向量,因此, 求导,指的是y的所有标量(y_1, y_2, ..., y_n)对向量x求偏导,即:

这个矩阵称为雅克比矩阵,它是个对角矩阵,因为 ,因此 。

同理, 。

因此,所有中间导数相乘的结果:

lin_grad() 中的inp.g、w.g和b.g分别是求 的导数,以inp.g为例,它等于 ,且需要乘以前面各层的导数,即 outp.g @ w.t() ,之所以要用点积运算符(@)而不是标量相乘,是为了让它的导数shape和tensor shape保持一致。同理,w.g和b.g也是根据相同逻辑来计算的。

ReLu层的求导相对来说就简单多了,当输入 = 0时,导数为0,当输入 0时,导数为1。

求导运算终于结束了,接下来就是验证我们的反向传播是否正确。验证方法是将forward_backward()计算的导数和Pytorch自动微分得到的导数相比较,如果它们相近,就认为我们的反向传播算法是正确的。

首先,将计算好的参数导数保存到w1g、b1g、w2g和b2g中,再用Pytorch的自动微分来求w11、b11、w22和b22的导数。

最后,用np.allclose()来比较导数间的差异,如果有任何一个导数不相近,assert就会报错。结果证明,我们自己动手实现的算法是正确的。

反向传播是遵循链式法则的,它将前向传播的输出作为输入,输入作为输出,通过递进的方式将求导这个动作从后向前传递回各层。神经网络参数的求导需要进行矩阵微积分计算,根据这些导数的反方向来调节参数,就可以让模型的输出误差的优化到最小值。

欢迎关注和点赞,你的鼓励将是我创作的动力

python中gradx=img[:,1:,:,:]-img[:,:-1,:,:]是什么意思?

第二个维度上做一个梯度,

1:就是从索引1到最后,:-1就是从索引0到倒数第二个索引

Python怎么做最优化

一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin -- 简单Nelder-Mead算法fmin_powell -- 改进型Powell法fmin_bfgs -- 拟Newton法fmin_cg -- 非线性共轭梯度法fmin_ncg -- 线性搜索Newton共轭梯度法leastsq -- 最小二乘2.有约束的多元函数问题fmin_l_bfgs_b ---使用L-BFGS-B算法fmin_tnc ---梯度信息fmin_cobyla ---线性逼近fmin_slsqp ---序列最小二乘法nnls ---解|| Ax - b ||_2 for x=03.全局优化anneal ---模拟退火算法brute --强力法4.标量函数fminboundbrentgoldenbracket5.拟合curve_fit-- 使用非线性最小二乘法拟合6.标量函数求根brentq ---classic Brent (1973)brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名bisect ---二分法newton ---牛顿法fixed_point7.多维函数求根fsolve ---通用broyden1 ---Broyden’s first Jacobian approximation.broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixingexcitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数line_search ---找到满足强Wolfe的alpha值check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化fmin完整的调用形式是:fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。from scipy.optimize import fmin #引入优化包def myfunc(x):return x**2-4*x+8 #定义函数x0 = [1.3] #猜一个初值xopt = fmin(myfunc, x0) #求解print xopt #打印结果运行之后,给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):return x**2-4*x+8x0 = [1.3]xopt1 = fmin(myfunc, x0)print xopt1printxopt2 = fmin_powell(myfunc, x0)print xopt2printxopt3 = fmin_bfgs(myfunc, x0)print xopt3printxopt4 = fmin_cg(myfunc,x0)print xopt4给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 531.99999999997Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 12Gradient evaluations: 4[ 2.00000001]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 15Gradient evaluations: 5[ 2.]我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!

梯度 grad 的详细使用方法。

grad(电势(标量场))=电场强度(矢量场)

或者写成( x,y,z是坐标 )

grad(U(x,y,z))=E(x,y,z)

其他的类推.


网站标题:grad函数python,gradf
分享地址:http://csdahua.cn/article/hdecge.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流