go语言异步队列,go 异步队列

go语言循环队列的实现

队列的概念在 顺序队列 中,而使用循环队列的目的主要是规避假溢出造成的空间浪费,在使用循环队列处理假溢出时,主要有三种解决方案

创新互联公司专注于海南州企业网站建设,响应式网站建设,购物商城网站建设。海南州网站建设公司,为海南州等地区提供建站服务。全流程按需求定制制作,专业设计,全程项目跟踪,创新互联公司专业和态度为您提供的服务

本文提供后两种解决方案。

顺序队和循环队列是一种特殊的线性表,与顺序栈类似,都是使用一组地址连续的存储单元依次存放自队头到队尾的数据元素,同时附设队头(front)和队尾(rear)两个指针,但我们要明白一点,这个指针并不是指针变量,而是用来表示数组当中元素下标的位置。

本文使用切片来完成的循环队列,由于一开始使用三个参数的make关键字创建切片,在输出的结果中不包含nil值(看起来很舒服),而且在验证的过程中发现使用append()函数时切片内置的cap会发生变化,在消除了种种障碍后得到了一个四不像的循环队列,即设置的指针是顺序队列的指针,但实际上进行的操作是顺序队列的操作。最后是对make()函数和append()函数的一些使用体验和小结,队列的应用放在链队好了。

官方描述(片段)

即切片是一个抽象层,底层是对数组的引用。

当我们使用

构建出来的切片的每个位置的值都被赋为interface类型的初始值nil,但是nil值也是有大小的。

而使用

来进行初始化时,虽然生成的切片中不包含nil值,但是无法通过设置的指针变量来完成入队和出队的操作,只能使用append()函数来进行操作

在go语言中,切片是一片连续的内存空间加上长度与容量的标识,比数组更为常用。使用 append 关键字向切片中追加元素也是常见的切片操作

正是基于此,在使用go语言完成循环队列时,首先想到的就是使用make(type, len, cap)关键字方式完成切片初始化,然后使用append()函数来操作该切片,但这一方式出现了很多问题。在使用append()函数时,切片的cap可能会发生变化,用不好就会发生扩容或收缩。最终造成的结果是一个四不像的结果,入队和出队操作变得与指针变量无关,失去了作为循环队列的意义,用在顺序队列还算合适。

参考博客:

Go语言中的Nil

Golang之nil

Go 语言设计与实现

Golang kafka简述和操作(sarama同步异步和消费组)

一、Kafka简述

1. 为什么需要用到消息队列

异步:对比以前的串行同步方式来说,可以在同一时间做更多的事情,提高效率;

解耦:在耦合太高的场景,多个任务要对同一个数据进行操作消费的时候,会导致一个任务的处理因为另一个任务对数据的操作变得及其复杂。

缓冲:当遇到突发大流量的时候,消息队列可以先把所有消息有序保存起来,避免直接作用于系统主体,系统主题始终以一个平稳的速率去消费这些消息。

2.为什么选择kafka呢?

这没有绝对的好坏,看个人需求来选择,我这里就抄了一段他人总结的的优缺点,可见原文

kafka的优点:

1.支持多个生产者和消费者2.支持broker的横向拓展3.副本集机制,实现数据冗余,保证数据不丢失4.通过topic将数据进行分类5.通过分批发送压缩数据的方式,减少数据传输开销,提高吞高量6.支持多种模式的消息7.基于磁盘实现数据的持久化8.高性能的处理信息,在大数据的情况下,可以保证亚秒级的消息延迟9.一个消费者可以支持多种topic的消息10.对CPU和内存的消耗比较小11.对网络开销也比较小12.支持跨数据中心的数据复制13.支持镜像集群

kafka的缺点:

1.由于是批量发送,所以数据达不到真正的实时2.对于mqtt协议不支持3.不支持物联网传感数据直接接入4.只能支持统一分区内消息有序,无法实现全局消息有序5.监控不完善,需要安装插件6.需要配合zookeeper进行元数据管理7.会丢失数据,并且不支持事务8.可能会重复消费数据,消息会乱序,可用保证一个固定的partition内部的消息是有序的,但是一个topic有多个partition的话,就不能保证有序了,需要zookeeper的支持,topic一般需要人工创建,部署和维护一般都比mq高

3. Golang 操作kafka

3.1. kafka的环境

网上有很多搭建kafka环境教程,这里就不再搭建,就展示一下kafka的环境,在kubernetes上进行的搭建,有需要的私我,可以发yaml文件

3.2. 第三方库

github.com/Shopify/sarama // kafka主要的库*github.com/bsm/sarama-cluster // kafka消费组

3.3. 消费者

单个消费者

funcconsumer(){varwg sync.WaitGroup  consumer, err := sarama.NewConsumer([]string{"172.20.3.13:30901"},nil)iferr !=nil{      fmt.Println("Failed to start consumer: %s", err)return}  partitionList, err := consumer.Partitions("test0")//获得该topic所有的分区iferr !=nil{      fmt.Println("Failed to get the list of partition:, ", err)return}forpartition :=rangepartitionList {      pc, err := consumer.ConsumePartition("test0",int32(partition), sarama.OffsetNewest)iferr !=nil{        fmt.Println("Failed to start consumer for partition %d: %s\n", partition, err)return}      wg.Add(1)gofunc(sarama.PartitionConsumer){//为每个分区开一个go协程去取值formsg :=rangepc.Messages() {//阻塞直到有值发送过来,然后再继续等待fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))        }deferpc.AsyncClose()        wg.Done()      }(pc)  }  wg.Wait()}funcmain(){  consumer()}

消费组

funcconsumerCluster(){  groupID :="group-1"config := cluster.NewConfig()  config.Group.Return.Notifications =trueconfig.Consumer.Offsets.CommitInterval =1* time.Second  config.Consumer.Offsets.Initial = sarama.OffsetNewest//初始从最新的offset开始c, err := cluster.NewConsumer(strings.Split("172.20.3.13:30901",","),groupID, strings.Split("test0",","), config)iferr !=nil{      glog.Errorf("Failed open consumer: %v", err)return}deferc.Close()gofunc(c *cluster.Consumer){      errors := c.Errors()      noti := c.Notifications()for{select{caseerr := -errors:            glog.Errorln(err)case-noti:        }      }  }(c)formsg :=rangec.Messages() {      fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))      c.MarkOffset(msg,"")//MarkOffset 并不是实时写入kafka,有可能在程序crash时丢掉未提交的offset}}funcmain(){goconsumerCluster()}

3.4. 生产者

同步生产者

packagemainimport("fmt""github.com/Shopify/sarama")funcmain(){  config := sarama.NewConfig()  config.Producer.RequiredAcks = sarama.WaitForAll//赋值为-1:这意味着producer在follower副本确认接收到数据后才算一次发送完成。config.Producer.Partitioner = sarama.NewRandomPartitioner//写到随机分区中,默认设置8个分区config.Producer.Return.Successes =truemsg := sarama.ProducerMessage{}  msg.Topic =`test0`msg.Value = sarama.StringEncoder("Hello World!")  client, err := sarama.NewSyncProducer([]string{"172.20.3.13:30901"}, config)iferr !=nil{      fmt.Println("producer close err, ", err)return}deferclient.Close()  pid, offset, err := client.SendMessage(msg)iferr !=nil{      fmt.Println("send message failed, ", err)return}  fmt.Printf("分区ID:%v, offset:%v \n", pid, offset)}

异步生产者

funcasyncProducer(){  config := sarama.NewConfig()  config.Producer.Return.Successes =true//必须有这个选项config.Producer.Timeout =5* time.Second  p, err := sarama.NewAsyncProducer(strings.Split("172.20.3.13:30901",","), config)deferp.Close()iferr !=nil{return}//这个部分一定要写,不然通道会被堵塞gofunc(p sarama.AsyncProducer){      errors := p.Errors()      success := p.Successes()for{select{caseerr := -errors:iferr !=nil{              glog.Errorln(err)            }case-success:        }      }  }(p)for{      v :="async: "+ strconv.Itoa(rand.New(rand.NewSource(time.Now().UnixNano())).Intn(10000))      fmt.Fprintln(os.Stdout, v)      msg := sarama.ProducerMessage{        Topic: topics,        Value: sarama.ByteEncoder(v),      }      p.Input() - msg      time.Sleep(time.Second *1)  }}funcmain(){goasyncProducer()select{      }}

3.5. 结果展示-

同步生产打印:

分区ID:0,offset:90

消费打印:

Partition:0,Offset:90,key:,value:Hello World!

异步生产打印:

async:7272async:7616async:998

消费打印:

Partition:0,Offset:91,key:,value:async:7272Partition:0,Offset:92,key:,value:async:7616Partition:0,Offset:93,key:,value:async:998

如何用go语言实现数据结构中的队列数据类型

你的代码是想把front到rear的值全部输出

但是你下面的操作自己检查一下没有改变front的值,也没有改变rear的值,所以front!=rear是死循环

如果好一点的话

void printQueue(LinkQueue *Q)/*依次输出队列*/

{

if(Q-front==Q-rear)

{

printf("队列为空");

exit(1);

}

while(Q-front!=Q-rear)/*老师告诉我说是这里的while是死循环,为什么是死循环呢,不是很懂,请细说。请帮我改为正确的代码,谢谢。*/

{

printf("%d, ", Q-front-data);

Q-front=Q-front-next;

}

//exit(0);

}试试可不可以,不行再追问


当前名称:go语言异步队列,go 异步队列
地址分享:http://csdahua.cn/article/hdhccd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流