r语言c函数解析 R语言中c函数

R语言数据对象与运算

R语言数据对象与运算

成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于网站建设、网站设计、凌源网络推广、微信平台小程序开发、凌源网络营销、凌源企业策划、凌源品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联为所有大学生创业者提供凌源建站搭建服务,24小时服务热线:18980820575,官方网址:www.cdcxhl.com

R语言数据对象与运算 笔记整理

2.1 数据对象及类型

R语言创建和控制的实体被称为对象(object)

ls()命令来查看当前系统里的数据对象

R对象的名称必须以一个英文字母打头,并由一串大小写字母、数字或钟点组成

注意:R区分大小写

不要用R的内置函数名称作为数据对象的名称,如c、length等

2.2 数据对象类型

R语言的对象包括

数值型(numeric):实数, 可写成整数(integers)、小数(decimal fractions)、科学记数(scientific notation)

逻辑型(logical):T(true)或F(FALSE)

字符型(character):夹在" "或之间

复数型(complex):形如a+bi

原味型(raw):以二进制形式保存数据

缺省型(missing value):有些统计资料是不完整的,当一个元素或值在统计的时候是“不可得到(not available)”或“缺失值(missing value)”的时候,相关位置可能会被保留并赋予一个特定的NA(not available)值,任何NA的运算结果都是NA。

辨别和转换数据对象类型的函数:

辨别 转换

character is.character() as,character()

complex

double

integer

logical

NA

numeric

2.3 数据对象构造

R语言里的数据对象主要有六种构造:向量(vector)、矩阵(matrix)、数组(array)、列表(list)、数据框(data frames)、因子(factor)

2.3.1 向量(vector)是由有相同基本类型元素组成的序列,相当于一维数组

5个数值组成的向量x,这是一个用函数c()完成的赋值语句,这里c()可以有任意多个参数,而它输出的值则是一个把这些参数首尾相连形成的一个向量

R的赋值符号除了“-”外,还有"-""="

例如:

c(1,3,5,7,9) - y

y

[1] 2 5 8 3

z = c(1,3,5,7,9)

z

[1] 1 3 5 7 9

assign()函数对向量进行赋值

length():可返回向量的长度

mode()可返回向量的数据类型

正则序列 用 “:”符号,可产生有规律的正则序列(: 的运算级别最高)

函数seq()产生有规律的各种序列

seq(from,to ,by) from 给序列的起始值,to表示序列的终止值,by表示步长(by 省略时,表示步长值为1)

seq(1,10,2)

[1] 1 3 5 7 9

seq(1,10)

[1] 1 2 3 4 5 6 7 8 9 10

有时关注的是数列的长度,利用句法:seq(下界,by=,length=)

seq(1,by=2,length=10)

[1] 1 3 5 7 9 11 13 15 17 19

rep(x,times,……)x表示要重复的对象,times表示重复的次数

rep(c(1,3),4)

[1] 1 3 1 3 1 3 1 3

rep(c(1,3),each=4)

[1] 1 1 1 1 3 3 3 3

对每个元素进行重复;

R中的内置函数:

mean()来示向量的均值

median()求是位数

var()求方差

sd()求标准差

sort()对向量排序

rev()将向量按原方向的反方向排列

rank()给求出向量的秩

prod()求向量连乘积

append()为向量添加元素

对向量运算常见函数表

函数 用途

sum() 求和

max() 求最大值

min() 求最小值

range() 求极差(全矩)

mean() 求均值

median 求中位数

var() 求方差

sd() 求标准差

sort() 排序

rev() 反排序

rank() 求秩

append() 添加

replace() 替换

match() 匹配

pmatch() 部分匹配

all() 判断所有

any() 判断部分

prod() 积

2.3.2 矩阵

矩阵(matrix)是将数据用行和列排列的长方形表格,它是二维的数组,其单元必须是相同的数据类型,通常用列来表示不同的变量,用行表示各个对象。

其句法是:

matrix(data=NA,ncol=1,byrow-=FALSE,dimnames=NULL)

data是必须的,其它几个选择参数。

nrow表示矩阵的行数

ncol表示矩阵的列数

byrow默认为FALSE,表示矩阵按列排列,如设置为T,表示按行排列;

dimnames可更改矩阵行列名字

diag()函数生成对角矩阵

diag()这个函数比较特别,当数据是向量时则生成对角矩阵,但当数据是矩阵时,则返回对角元素

也可用函数diag()生成单位矩阵

当我们生成了某个矩阵后,若要访问矩阵的某个元素或某行(列),可以利用形如A[i,j]的形式得到相应的索引矩阵

矩阵可进行相应的加减乘除运算,但运算过程中要注意行数和列数的限制条件

R里A*B并不是表示矩阵相乘,只表示矩阵对应的元素相乘

矩阵相乘应用A%*%B

dim()返回矩阵的行数和列数

nrow()返回矩阵的行数

ncol()返回矩阵的列数

solve()返回矩阵的逆矩阵

对矩阵运算的常见函数

函数 用途

as.matrix() 把非矩阵的转换成矩阵

is.matrix() 辨别是否矩阵

diag() 返回对角元素或生成对角矩阵

eigen() 求特征值和特征向量

solve() 求逆矩阵

chol() Choleski分解

svd() 奇异值分解

qr() QR分解

det() 求行列式

dim() 返回行列数

t() 矩阵转置

apply() 对矩阵应用函数

R语言还提供了专门针对矩阵的行或列计算的函数

如 colSUms()对矩阵各列求和 colMeans()求矩阵各列的均值

类似的有 rowSums()rowMeans()

更一般的方法:

apply()函数来对各行各列进行运算

句法是:apply(X,MARGIN,FUN,……)

X表示要处理的数据

MARGIN表示函数作用的范围

取1表示对行运用函数

取2表示对列运用函数

FUN表示要运用的函数

rbind()、cbind()将两个或两个以上的矩阵合并起来

rbind()表示按行合并,cbind()则表示按列合并

2.3.3 数组

数组(array)可以看作是带有多个下标的类型相同的元素的集合。

数组的生成函数是array(),其句法是

array(data=NA,dim=length(data),dimnames-NULL)

data表示数据,可以为空

dim 表示维数

dimnames可以更改数组难度的名称

2.3.4 列表

向量、矩阵和的单元必须是同一类型的数据,若一个数据对象需要含有不同的数据类型,可采用列表(list)这种数据对象的形式。

列表是一个对象的有序集合构成的对象,列表中包含的对象又称为它的分量(components),分量可以是不同的模式或(和)类型

语法式为:list (变量1=分量1,变量2=分量2,……)

若要访问列表的某一成分,可以用LST[[1]],LST[[2]]的形式访问

因分量可以被命名,故可以在列表名称后加$符号,再写上成分名称来访问列表分量

函数length()、mode()、names()可以分别返回列表的长度(分量的数目)、数据类型、列表里成分的名字

2.3.5 数据框

数据框(data frame)是一种矩阵形式的数据,但数据框中各列可以是不同类型的数据。数据框每列是一个变量,每行是一个观测 。

对可能列入数据框中的列表有如下的一些限制:

1.分量必须是向量(数值,字符,逻辑),因子,数值矩阵,列表或者其他数据框。

2.矩阵,列表和数据框为新的数据框提供了尽可能多的变量,因为它们各自拥有列、元素或者变量。

3.数值向量、逻辑值、因子保持原有格式,而字符向量会被强制转换成因子并且它的水平就是向量中出现的独立值。

4.在数据框中以变量形式出现的向量结构必须长度一致,矩阵结构必须有一样的行数。

R中用函数data.frame()生成数据框,其句法是:data.frame(data1,data2,……)

数据框的列名默认为变量名,也可对列名进行重新命名

也可以对数据框的行名进行修改

2.3.6 因子和有序因子

分类型数据经常要把数据分成不同的水平或因子(factor)

生成因子的命令是factor(),其句法是:factor(data,levels,labels,……)

其中data表示数据

levels是因子水平向量

labels是因子的标签向量

levels,labels是备选项,可以不选

若上面的每个因子并不表示因子的大小,要表达因子之间有大小顺序(考虑因子之间的顺序),则可以用 ordered()函数产生

2.4 数据的录入及编辑

c函数:c函数是把各个值联成一个向量或列表,可以形成数值型向量、字符型向量或其它类型向量

scan函数:功能类似于c函数,实际上是一种键盘输入数据函数。当输入scan(),然后按回车键,这时将等待输入数据,数据之间只要空格分开即可(c函数要用逗号分开)。输入完数据,再按回车键,这时数据录入完毕。

scan函数还可以读入外部文本文件,若现有一个文本文件,data.txt,读入这个文件的命令是: x=scan(file="dat.txt")

若原文件的数据之间有逗号等分隔符,用scan读入应该去掉这些分隔符,其命令是: x=scan(file="dat.txt",sep=",")

编辑数据

data.entry命令

xx原先未被定义,现在赋予其一个空值,这时会出现一个电子表格界面,等待输入数据: data.entry(xx=c(NA))

当电子表格关闭后,数据会自动保存

edit命令用来编辑函数,也可用来编辑数据,但不会自动保存

fix函数与edit类似,但它可以自动保存

从外部文件读入数据

从文本文件读取:

s1=read.table("student.txt")

s1

V1 V2 V3

1 class sex score

2 1 女 80

3 1 男 85

4 2 男 92

5 2 女 76

6 3 女 61

7 3 女 95

8 3 男 83

读入表格数据的命令是:read.table

忽略掉标签而直接使用默认的行标签

s2=read.table("student.txt",header=T)

s2

class sex score

1 1 女 80

2 1 男 85

3 2 男 92

4 2 女 76

5 3 女 61

6 3 女 95

7 3 男 83

从网络读入数据

url可以从网页上读入正确格式的数据,要借助read.table函数

address=

/sample.txt

read.table(file=url(address))

读入其他格式的数据库

要读入其他格式的数据库,必须先安装"foreign"模块,它不属于R的8个内置模块,需在使用前安装。 library(foreign)

SAS:R只能诗篇SAS Transport format(XPORT)文件,需要把普通的SAS数据文件(.ssd和.sas7bdat)转换成Transport format(XPORT)文件,再用命令:read.xport()

SPSS数据库:read.spss()可读入SPSS数据文件

Epi info数据库:

要给数据集一个名字,则是;read.epiinfo("文件名.rec")-名称

Stata数据库:

R可读入Stata5,6,7的数据库

读入数据文件后,使用数据集名$变量名,即可使用各个变量

read.dta(“文件名.dta”)

读入数据文件后,使用数据集名$变量名,即可使用各个变量。

mean(data$age)

便是计算数据集 data中的变量age的均数。

2.5 函数、循环与条件表达式

2.5.1 编写函数

句法是:

函数名 = function (参数1,参数2…)

{

函数体

函数返回值

}

对于这类只有一个算术式的简单函数,也要不要{}

mean(data$age)

便是计算数据集 data中的变量age的均数。

若不使用圆括号,直接输入函数名,按回车键将显示函数的定义式:

单参数:使函数个性化,可使用单参数,函数将会根据参数的不同,返回值不同

welcome.sb = function(names) print(paste("welcome",names,"to

use R"))

welcome.sb("Mr fang")

[1] "welcome Mr fang to use R"

welcome.sb("Mr Wang")

[1] "welcome Mr Wang to use R"

默认参数:即不输入任何参数

函数的默认参数

welcome.sb=function(names="Mr fang")print(paste("welcome",

names,"to use R"))

welcome.sb()

[1] "welcome Mr fang to use R"

当函数体的表达式超过一个时,要用{}封起来

2.5.2 for循环

for循环的句法是:

for (变量 in取值向量) {

表达式…

}

R语言常用函数

1. 判断存在:一个元素是不是在向量中用 a%in%b

a="TT"

b=c("AA","AT","TT")

a %in% b

[1] TRUE

2. 判断某一元素这向量中的索引(第几个位置): index.TT=which(b==”TT”)

index.TT=which(b=="TT")#index.TT是想知道的索引号,which是判断函数,b是想知道的元素所在的向量

index.TT

[1] 3

3. 相当于 python 中的字典, names 函数

b

[1] "AA" "AT" "TT"

names(b)=c("geno1","geno2","geno3")#geno mean genotype

names(b)

[1] "geno1" "geno2" "geno3"

names(b)[1]

[1] "geno1"

names(b)[1]="test"

names(b)

[1] "test""geno2" "geno3"

names(b)=NULL

b

[1] "AA" "AT"

b["geno2"]

"AT"

pop_name=c(“CEU”,"YRI")

names(pop_name)=c(1,2)

names(pop_name[1])=1

4. 去除某一元素: b[-index.nu]

#想去除元素”TT”,如果你不知道是第几个索引,可以先判断索引,再删除。

b=c("AA","AT","TT")

names(b)=c("geno1","geno2","geno3")

index.TT=which(b=="TT")

b=b[-index.TT]

b

geno1 geno2

"AA""AT"

5. 相当于 Python 中的 set() 函数 和 count() 函数: unique() , table()

b=c("TT","AT","AT","TT","AA")

unique(b)#即相当于去除所有的重复,只保留一个

[1] "TT" "AT" "AA"

table(b)#以元素为name,统计各元素的个数

b

AA AT TT

122

6. 字符串的分割: strsplit()

test="AA"

strsplit(test)

错误于strsplit(test) :缺少参数"split",也没有缺省值

strsplit(test,split='')

[[1]]

[1] "A" "A"

test=strsplit(test,split='')[[1]]

test

[1] "A" "A"

7. 文本文档的写入: write.table()

write.table( res.matrix,file=new.file,sep='\t',quote=F,row.names=F,col.names=F,append=T)#quote=F去掉引号后写入,row.names=F去掉行的名字写入,否则会把名字写进去

##写入数据时候最好把数据存储成一个matrix然后直接写。要是每行每行写的话要注意数据的格式了。先建立一个空的matrix,见8,然后通过rbind或者cbind叠加上去。

方法一:

a=c()

b=c(“AA”,”TT”,”CC”)

for (i in 1:3){

a=c(a,b)

}

write.table(a,file=”test.txt”)#你会发现结果是

AA

TT

CC

….

##而且还有行和列的名字,因为没有设置参数。因为对于c向量来说,写的话默认是竖着写的,每个元素占一行。所以比较方便的就是rbind

方法二:

a=c()

b=c(“AA”,”TT”,”CC”)

for (i in 1:3){

a=rbind(a,b)

}

write.table(a,file=”test.txt”,quote=F,row.names=F,col.names=F)#你会发现结果是

AA TT CC

AA TT CC

AA TT CC

##原因是rbind把最总结果当做矩阵了。对于R数据的写入最好能生成最后的矩阵再写入。但是西面的梅一行写一次和方法二的效果是想通的,但是要用到append参数。

a=c()

b=c(“AA”,”TT”,”CC”)

for (i in 1:3){

a=rbind(a,b)

write.table(a,file=”test.txt”,quote=F,row.names=F,col.names=F,append=T)

}

8. 建立一个空的 matrix :

res.matrix - matrix( ,nrow=0,ncol=6 )##这样就建立了一个0行6列的空matrix了。

9. 如何将 R 运行结果输出到文件

x=read.table("F:/my/work/chengxu/PValue/pc2jieguo/pc2302.txt")

z=t(x)

ks.test(y,z)

Two-sample Kolmogorov-Smirnov test

data:y and z

D = 0.207, p-value 2.2e-16

alternative hypothesis: two-sided

如上面运行结果,我想将p-value 2.2e-16自动保存到一个文件中,如何用R程序实现,谢谢!

sink("output.txt")

print(ks.test(y,z)$p.value)

sink()

10 降序排列:

a=c(1,1.2,0.1,4,5,-0.1)

a=sort(a,decreasing=T)

a

[1]5.04.01.21.00.1 -0.1

11. 取前1%的数

a=c(1:10,4:20,1:100,1:1000)

a=sort(a,decreasing=T)#先降序

sig=a[round(length(a)*0.01)]

sig

[1] 990

12.在shell中直接执行R脚本

R CMD BATCH --argstest.R

13. R中高级作图的方法

14:设置字体类型:

par(family='Times New Roman')

15:控制图形四周的空白大小

par(mfrow=c(3,1),mar=c(0,0,0,0))

其中mar是四周的间距,分别为x,y上下的距离

16控制作图区域的大小layout

layout(c(1,2,3),height=c(1,1,0.5))

分成竖着三份, 其中三份比列依次为(高度依次为2:2:1)

17保留两位小数

round(0.123,digits=2)

18 在原有图的基础上画图:

par(fig=c(0.1,0.5,0.43,0.65), new=TRUE)

19 只显示y轴

plot(1:10,1:10,axes=F)

axis(2,at.....)

20 调节刻度方向 las

plot(1:10,1:10,las=1)

21 屏幕分割

layout(matrix(1:16,4,4))###竖着plot

par(mfrow=c(4,4))##横着plot

22.逻辑表示或者

xor为异或,两值不等为真,两值相等为假。例:xor(0, 1)

23. 从向量中随机取几个数sample

sample(rep(1:1000),10)

23 字符串转换成小数浮点型

as.numeric("0.123")

24. 读取不规范的文本

f=readLines(afile,n=1)#n表示读几行

f=strsplit(f,'\t')##分割

f[1][[1]]##第一行

f[1][[1]][1]##第一行 第一个字符串

25. write 写入文件

write(afile, "a\tb\t",append=T) #沿着每行一次 写入

26. 不需要循环,这直接对matrix没行或者每列进行筛选操作apply()

apply(data,col2 or row1, max0)

27.保留2位小数

a=2.300

a=as.numeric(sprintf(“%.3f”,a))

28。调出假设检验的p value

t.test(data1,data2)$p.value

R语言常用函数整理(基础篇)

R语言常用函数整理本篇是基础篇,即R语言自带的函数。

vector:向量

numeric:数值型向量

logical:逻辑型向量

character;字符型向量

list:列表

data.frame:数据框

c:连接为向量或列表

length:求长度

subset:求子集

seq,from:to,sequence:等差序列

rep:重复

NA:缺失值

NULL:空对象

sort,order,unique,rev:排序

unlist:展平列表

attr,attributes:对象属性

mode,class,typeof:对象存储模式与类型

names:对象的名字属性

字符型向量 nchar:字符数

substr:取子串 format,formatC:把对象用格式转换为字符串

paste()、paste0()不仅可以连接多个字符串,还可以将对象自动转换为字符串再相连,另外还能处理向量。

strsplit:连接或拆分

charmatch,pmatch:字符串匹配

grep,sub,gsub:模式匹配与替换

complex,Re,Im,Mod,Arg,Conj:复数函数

factor:因子 codes:因子的编码 levels:因子的各水平的名字 nlevels:因子的水平个数 cut:把数值型对象分区间转换为因子

table:交叉频数表 split:按因子分组 aggregate:计算各数据子集的概括统计量 tapply:对“不规则”数组应用函数

dev.new() 新建画板

plot()绘制点线图,条形图,散点图.

barplot( ) 绘制条形图

dotchart( ) 绘制点图

pie( )绘制饼图.

pair( )绘制散点图阵

boxplot( )绘制箱线图

hist( )绘制直方图

scatterplot3D( )绘制3D散点图.

par()可以添加很多参数来修改图形

title( ) 添加标题

axis( ) 调整刻度

rug( ) 添加轴密度

grid( ) 添加网格线

abline( ) 添加直线

lines( ) 添加曲线

text( ) 添加标签

legend() 添加图例

+, -, *, /, ^, %%, %/%:四则运算 ceiling,floor,round,signif

1、round() #四舍五入

例:x - c(3.1416, 15.377, 269.7)

round(x, 0) #保留整数位

round(x, 2) #保留两位小数

round(x, -1) #保留到十位

2、signif() #取有效数字(跟学过的有效数字不是一个意思)

例:略

3、trunc() #取整

floor() #向下取整

ceiling() #向上取整

例:xx - c(3.60, 12.47, -3.60, -12.47)

trunc(xx)

floor(xx)

ceiling(xx)

max,min,pmax,pmin:最大最小值

range:最大值和最小值 sum,prod:向量元素和,积 cumsum,cumprod,cummax,cummin:累加、累乘 sort:排序 approx和approx fun:插值 diff:差分 sign:符号函数

abs,sqrt:绝对值,平方根

log, exp, log10, log2:对数与指数函数

sin,cos,tan,asin,acos,atan,atan2:三角函数

sinh,cosh,tanh,asinh,acosh,atanh:双曲函数

beta,lbeta,gamma,lgamma,digamma,trigamma,tetragamma,pentagamma,choose ,lchoose:与贝塔函数、伽玛函数、组合数有关的特殊函数

fft,mvfft,convolve:富利叶变换及卷积

polyroot:多项式求根

poly:正交多项式

spline,splinefun:样条差值

besselI,besselK,besselJ,besselY,gammaCody:Bessel函数

deriv:简单表达式的符号微分或算法微分

array:建立数组

matrix:生成矩阵

data.matrix:把数据框转换为数值型矩阵

lower.tri:矩阵的下三角部分

mat.or.vec:生成矩阵或向量

t:矩阵转置

cbind:把列合并为矩阵

rbind:把行合并为矩阵

diag:矩阵对角元素向量或生成对角矩阵

aperm:数组转置

nrow, ncol:计算数组的行数和列数

dim:对象的维向量

dimnames:对象的维名

rownames,colnames:行名或列名

%*%:矩阵乘法

crossprod:矩阵交叉乘积(内积)

outer:数组外积

kronecker:数组的Kronecker积

apply:对数组的某些维应用函数

tapply:对“不规则”数组应用函数

sweep:计算数组的概括统计量

aggregate:计算数据子集的概括统计量

scale:矩阵标准化

matplot:对矩阵各列绘图

cor:相关阵或协差阵

Contrast:对照矩阵

row:矩阵的行下标集

col:求列下标集

solve:解线性方程组或求逆

eigen:矩阵的特征值分解

svd:矩阵的奇异值分解

backsolve:解上三角或下三角方程组

chol:Choleski分解

qr:矩阵的QR分解

chol2inv:由Choleski分解求逆

,,=,=,==,!=:比较运算符 !,,,|,||,xor():

逻辑运算符 logical:

生成逻辑向量 all,

any:逻辑向量都为真或存在真

ifelse():二者择一 match,

%in%:查找

unique:找出互不相同的元素

which:找到真值下标集合

duplicated:找到重复元素

optimize,uniroot,polyroot:一维优化与求根

if,else,

ifelse,

switch:

分支 for,while,repeat,break,next:

循环 apply,lapply,sapply,tapply,sweep:替代循环的函数。

function:函数定义

source:调用文件 ’

call:函数调用 .

C,.Fortran:调用C或者Fortran子程序的动态链接库。

Recall:递归调用

browser,debug,trace,traceback:程序调试

options:指定系统参数

missing:判断虚参是否有对应实参

nargs:参数个数 stop:终止函数执行

on.exit:指定退出时执行 eval,expression:表达式计算

system.time:表达式计算计时

invisible:使变量不显示

menu:选择菜单(字符列表菜单)

其它与函数有关的还有:

delay,

delete.response,

deparse,

do.call,

dput,

environment ,

formals,

format.info,

interactive,

is.finite,

is.function,

is.language,

is.recursive ,

match.arg,

match.call,

match.fun,

model.extract,

name,

parse 函数能将字符串转换为表达式expression

deparse 将表达式expression转换为字符串

eval 函数能对表达式求解

substitute,

sys.parent ,

warning,

machine

cat,print:显示对象

sink:输出转向到指定文件

dump,save,dput,write:输出对象

scan,read.table,readlines, load,dget:读入

ls,objects:显示对象列表

rm, remove:删除对象

q,quit:退出系统

.First,.Last:初始运行函数与退出运行函数。

options:系统选项

?,help,help.start,apropos:帮助功能

data:列出数据集

head()查看数据的头几行

tail()查看数据的最后几行

每一种分布有四个函数:

d―density(密度函数),p―分布函数,q―分位数函数,r―随机数函数。

比如,正态分布的这四个函数为dnorm,pnorm,qnorm,rnorm。下面我们列出各分布后缀,前面加前缀d、p、q或r就构成函数名:

norm:正态,

t:t分布,

f:F分布,

chisq:卡方(包括非中心)

unif:均匀,

exp:指数,

weibull:威布尔,

gamma:伽玛,

beta:贝塔

lnorm:对数正态,

logis:逻辑分布,

cauchy:柯西,

binom:二项分布,

geom:几何分布,

hyper:超几何,

nbinom:负二项,

pois:泊松

signrank:符号秩,

wilcox:秩和,

tukey:学生化极差

sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量,

sort,order,rank与排序有关,

其它还有ave,fivenum,mad,quantile,stem等。

R中已实现的有chisq.test,prop.test,t.test。

cor,cov.wt,var:协方差阵及相关阵计算

biplot,biplot.princomp:多元数据biplot图

cancor:典则相关

princomp:主成分分析

hclust:谱系聚类

kmeans:k-均值聚类

cmdscale:经典多维标度

其它有dist,mahalanobis,cov.rob。

ts:时间序列对象

diff:计算差分

time:时间序列的采样时间

window:时间窗

lm,glm,aov:线性模型、广义线性模型、方差分析

quo()等价于quote()

enquo()等价于substitute()

R语言中的函数c中的c代表什么意思

c本身在这里应该是“combine”的首字母,用于合并一系列数字从而形成向量/数列。

逻辑回归中,R语言怎么解决解释性变量为多分类变量

1、首先在R语言中,定义一个变量m,并使用函数c()进行对变量m赋值,使用的是“-”,如下图所示。

2、可以不使用函数,直接使用“-”进行赋值,如下图所示。

3、也可以倒过来赋值,将变量放在函数后面,还是使用“-”赋值,如下图所示。

4、然后使用assign对变量进行赋值,前面参数是被赋值的变量,后面是需要的对象,如下图所示。

5、最后定义一个变量w,使用函数c()进行赋值;定义一个变量c,取w变量的倒数,如下图所示就完成了。

r语言c函数怎么用

r语言中的c()函数,用来把一些数据组合成向量。

如:x-c(1,2)

把1,2两个数,组合成向量(1,2),并存入变量x。


分享名称:r语言c函数解析 R语言中c函数
文章路径:http://csdahua.cn/article/hehoei.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流