扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
Android中文版
创新互联是一家专业提供霍山企业网站建设,专注与成都网站设计、成都网站制作、H5高端网站建设、小程序制作等业务。10年已为霍山众多企业、政府机构等服务。创新互联专业的建站公司优惠进行中。
api手册地址:
Ant最新版
api手册地址:
ASM字节码操作
api手册地址:
Axis2最新版
api手册地址:
Bash脚本
api手册地址:
Bootstrap 3
api手册地址:
Bootstrap 4
api手册地址:
C/C++
api手册地址:
C3P0连接池
api手册地址:
CentOS使用文档
api手册地址:
Commons-Beanutils
api手册地址:
Commons-Fileupload
api手册地址:
Commons-IO最新版
api手册地址:
Commons-Lang最新版
api手册地址:
Commons-Net最新版
api手册地址:
CSS 3
api手册地址:
DBCP连接池
api手册地址:
Dom4j
api手册地址:
dubbo中文文档
api手册地址:
EhCache
api手册地址:
Freemarker
api手册地址:
Go语言
api手册地址:
Hadoop
api手册地址:
Hibernate中文版
api手册地址:
IKAnalyzer中文版
api手册地址:
Java 10
api手册地址:
Java 6
api手册地址:
Java 7
api手册地址:
Java 8中文版
api手册地址:
jqGrid中文版
api手册地址:
Jquery中文版
api手册地址:
Json-lib
api手册地址:
Junit4最新版
api手册地址:
Kryo
api手册地址:
Log4j最新版
api手册地址:
Lucene
api手册地址:
Maven
api手册地址:
Windows MFC中文版
api手册地址:
Mybatis
api手册地址:
MySql中文版
api手册地址:
Netty 3.6
api手册地址:
Nginx中文版
api手册地址:
OpenJPA最新版
api手册地址:
PHP中文版
api手册地址:
POI-apache
api手册地址:
QuickServer
api手册地址:
redis中文参考文档
api手册地址:
Ruby
api手册地址:
Ruby-library
api手册地址:
Ruby on Rails
api手册地址:
Shiro
api手册地址:
Spring最新版
api手册地址:
Spring for Android
api手册地址:
Spring Boot
api手册地址:
Spring Cloud中文文档
api手册地址:
Spring Security
api手册地址:
Spring中文版
api手册地址:
Struts 2最新版
api手册地址:
Taperstry
api手册地址:
TensorFlow中文
api手册地址:
Tomcat
api手册地址:
Ubuntu
api手册地址:
Velocity 1.7
api手册地址:
VelocityTools2.0
api手册地址:
Vue Router中文参考
api手册地址:
vue.js中文文档
api手册地址:
XMLBeans
api手册地址:
Yahoo UI中文版
api手册地址:
Zend Framework中文版
api手册地址:
Zookeeper
api手册地址:
《Go程序设计语言中文版》百度网盘pdf最新全集下载:
链接:
?pwd=0cii 提取码:0cii
简介:本书由《C程序设计语言》的作者Kernighan和谷歌公司Go团队主管Alan Donovan联袂撰写,是学习Go语言程序设计的指南。本书共13章,主要内容包括:Go的基础知识、基本结构、
基本数据类型、复合数据类型、函数、方法、接口、goroutine、通道、共享变量的并发性、包、go工具、测试、反射等。
本书适合作为计算机相关专业的教材,也可供Go语言爱好者阅读
Android中文版
api手册地址:
Ant最新版
api手册地址:
ASM字节码操作
api手册地址:
Axis2最新版
api手册地址:
Bash脚本
api手册地址:
Bootstrap 3
api手册地址:
Bootstrap 4
api手册地址:
C/C++
api手册地址:
C3P0连接池
api手册地址:
CentOS使用文档
api手册地址:
Commons-Beanutils
api手册地址:
Commons-Fileupload
api手册地址:
Commons-IO最新版
api手册地址:
Commons-Lang最新版
api手册地址:
Commons-Net最新版
api手册地址:
CSS 3
api手册地址:
DBCP连接池
api手册地址:
Dom4j
api手册地址:
dubbo中文文档
api手册地址:
EhCache
api手册地址:
Freemarker
api手册地址:
Go语言
api手册地址:
Hadoop
api手册地址:
Hibernate中文版
api手册地址:
IKAnalyzer中文版
api手册地址:
Java 10
api手册地址:
Java 6
api手册地址:
Java 7
api手册地址:
Java 8中文版
api手册地址:
jqGrid中文版
api手册地址:
Jquery中文版
api手册地址:
Json-lib
api手册地址:
Junit4最新版
api手册地址:
Kryo
api手册地址:
Log4j最新版
api手册地址:
Lucene
api手册地址:
Maven
api手册地址:
Windows MFC中文版
api手册地址:
Mybatis
api手册地址:
MySql中文版
api手册地址:
Netty 3.6
api手册地址:
Nginx中文版
api手册地址:
OpenJPA最新版
api手册地址:
PHP中文版
api手册地址:
POI-apache
api手册地址:
QuickServer
api手册地址:
redis中文参考文档
api手册地址:
Ruby
api手册地址:
Ruby-library
api手册地址:
Ruby on Rails
api手册地址:
Shiro
api手册地址:
Spring最新版
api手册地址:
Spring for Android
api手册地址:
Spring Boot
api手册地址:
Spring Cloud中文文档
api手册地址:
Spring Security
api手册地址:
Spring中文版
api手册地址:
Struts 2最新版
api手册地址:
Taperstry
api手册地址:
TensorFlow中文
api手册地址:
Tomcat
api手册地址:
Ubuntu
api手册地址:
Velocity 1.7
api手册地址:
VelocityTools2.0
api手册地址:
Vue Router中文参考
api手册地址:
vue.js中文文档
api手册地址:
XMLBeans
api手册地址:
Yahoo UI中文版
api手册地址:
Zend Framework中文版
api手册地址:
Zookeeper
api手册地址:
有很多教程是关于Go的sql.DB类型和如何使用它来执行SQL数据库查询的。但大多数内容都没有讲述 SetMaxOpenConns() , SetMaxIdleConns() 和 SetConnMaxLifetime()方法, 您可以使用它们来配置sql.DB的行为并改变其性能。
转自:
整理:go语言中文文档:
在本文我将详细解释这些设置的作用,并说明它们所能产生的(积极和消极)影响。
一个sql.DB对象就是一个数据库连接池,它包含“正在用”和“空闲的”连接。一个正在用的连接指的是,你正用它来执行数据库任务,例如执行SQL语句或行查询。当任务完成连接就是空闲的。
当您创建sql.DB执行数据库任务时,它将首先检查连接池中是否有可用的空闲连接。如果有可用的连接,那么Go将重用现有连接,并在执行任务期间将其标记为正在使用。如果池中没有空闲连接,而您需要一个空闲连接,那么Go将创建一个新的连接。
默认情况下,在同一时间打开连接的数量是没有限制(包含使用中+空闲)。但你可以通过SetMaxOpenConns()方法实现自定义限制,如下所示:
在这个示例代码中,连接池现在有5个并发打开的连接数。如果所有5个连接都已经被标记为正在使用,并且需要另一个新的连接,那么应用程序将被迫等待,直到5个连接中的一个被释放并变为空闲。
为了说明更改MaxOpenConns的影响,我运行了一个基准测试,将最大打开连接数设置为1、2、5、10和无限。基准测试在PostgreSQL数据库上执行并行的INSERT语句,您可以在这里找到代码。测试结果:
对于这个基准测试,我们可以看到,允许打开的连接越多,在数据库上执行INSERT操作所花费的时间就越少(打开的连接数为1时,执行速度3129633ns/op,而无限连接:531030ns/op——大约快了6倍)。这是因为允许打开的连接越多,可以并发执行的数据库查询就越多。
默认情况下,sql.DB允许连接池中最多保留2个空闲连接。你可以通过SetMaxIdleConns()方法改变它,如下所示:
从理论上讲,允许池中有更多的空闲连接将提高性能,因为这样就不太可能从头开始建立新连接——因此有助于提升数据库性能。
让我们来看看相同的基准测试,最大空闲连接设置为none, 1,2,5和10:
当MaxIdleConns设置为none时,必须为每个INSERT从头创建一个新的连接,我们可以从基准测试中看到,平均运行时和内存使用量相对较高。
只允许保留和重用一个空闲连接对基准测试影响特别明显——它将平均运行时间减少了大约8倍,内存使用量减少了大约20倍。继续增加空闲连接池的大小会使性能变得更好,尽管改进并不明显。
那么,您应该维护一个大的空闲连接池吗?答案取决于应用程序。重要的是要意识到保持空闲连接是有代价的—它占用了可以用于应用程序和数据库的内存。
还有一种可能是,如果一个连接空闲时间太长,那么它可能会变得不可用。例如,MySQL的wait_timeout设置将自动关闭任何8小时(默认)内未使用的连接。
当发生这种情况时,sql.DB会优雅地处理它。坏连接将自动重试两次,然后放弃,此时Go将该连接从连接池中删除,并创建一个新的连接。因此,将MaxIdleConns设置得太大可能会导致连接变得不可用,与空闲连接池更小(使用更频繁的连接更少)相比,会占有更多的资源。所以,如果你很可能很快就会再次使用,你只需保持一个空闲的连接。
最后要指出的是,MaxIdleConns应该总是小于或等于MaxOpenConns。Go强制执行此操作,并在必要时自动减少MaxIdleConns。
现在让我们看看SetConnMaxLifetime()方法,它设置连接可重用的最大时间长度。如果您的SQL数据库也实现了最大连接生命周期,或者—例如—您希望方便地在负载均衡器后交换数据库,那么这将非常有用。
你可以这样使用它:
在这个例子中,所有的连接都将在创建后1小时“过期”,并且在过期后无法重用。但注意:
从理论上讲,ConnMaxLifetime越短,连接过期的频率就越高——因此,需要从头创建连接的频率就越高。为了说明这一点,我运行了将ConnMaxLifetime设置为100ms、200ms、500ms、1000ms和无限(永远重用)的基准测试,默认设置为无限打开连接和2个空闲连接。这些时间段显然比您在大多数应用程序中使用的时间要短得多,但它们有助于很好地说明行为。
在这些特定的基准测试中,我们可以看到,与无限生存期相比,在100ms生存期时内存使用量增加了3倍以上,而且每个INSERT的平均运行时也稍微长一些。
如果您在代码中设置了ConnMaxLifetime,那么一定要记住连接将过期(随后重新创建)的频率。例如,如果您总共有100个连接,而ConnMaxLifetime为1分钟,那么您的应用程序可能每秒钟杀死和重新创建1.67个连接(平均值)。您不希望这个频率太大,最终会阻碍性能,而不是提高性能。
最后,如果不说明超过数据库连接数量的硬限制将会发生什么,那么本文就不完整了。 为了说明这一点,我将修改postgresql.conf文件,这样总共只允许5个连接(默认是100个)…
然后在无限连接的情况下重新运行基准测试……
一旦达到5个连接的硬限制,数据库驱动程序(pq)立即返回一个太多客户端连接的错误消息,而无法完成INSERT。为了防止这个错误,我们需要将sql.DB中打开连接的最大总数(正在使用的+空闲的)设置为低于5。像这样:
现在,sql.DB在任何时候最多只能创建3个连接,基准测试运行时应该不会出现任何错误。但是这样做需要注意:当达到开放连接数限制,并且所有连接都在使用时,应用程序需要执行的任何新的数据库任务都将被迫等待,直到连接标记为空闲。例如,在web应用程序的上下文中,用户的HTTP请求看起来会“挂起”,甚至在等待数据库任务运行时可能会超时。
为了减轻这种情况,你应该始终在一个上下文中传递。在调用数据库时,启用上下文的方法(如ExecContext()),使用固定的、快速的超时上下文对象。
总结
1、根据经验,应该显式设置MaxOpenConns值。这应该小于数据库和基础设施对连接数量的硬性限制。
2、一般来说,更高的MaxOpenConns和MaxIdleConns值将带来更好的性能。但你应该注意到效果是递减的,连接池空闲连接太多(连接没有被重用,最终会变坏)实际上会导致性能下降。
3、为了降低上面第2点带来的风险,您可能需要设置一个相对较短的ConnMaxLifetime。但你也不希望它太短,导致连接被杀死或不必要地频繁重建。
4、MaxIdleConns应该总是小于或等于MaxOpenConns。
对于中小型web应用程序,我通常使用以下设置作为起点,然后根据实际吞吐量水平的负载测试结果进行优化。
Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。
M ---------- thread内核级线程,所有的G都要放在M上才能运行。
P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0。
如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考: ()
()
网关=反向代理+负载均衡+各种策略,技术实现也有多种多样,有基于 nginx 使用 lua 的实现,比如 openresty、kong;也有基于 zuul 的通用网关;还有就是 golang 的网关,比如 tyk。
这篇文章主要是讲如何基于 golang 实现一个简单的网关。
转自: troy.wang/docs/golang/posts/golang-gateway/
整理:go语言钟文文档:
启动两个后端 web 服务(代码)
这里使用命令行工具进行测试
具体代码
直接使用基础库 httputil 提供的NewSingleHostReverseProxy即可,返回的reverseProxy对象实现了serveHttp方法,因此可以直接作为 handler。
具体代码
director中定义回调函数,入参为*http.Request,决定如何构造向后端的请求,比如 host 是否向后传递,是否进行 url 重写,对于 header 的处理,后端 target 的选择等,都可以在这里完成。
director在这里具体做了:
modifyResponse中定义回调函数,入参为*http.Response,用于修改响应的信息,比如响应的 Body,响应的 Header 等信息。
最终依旧是返回一个ReverseProxy,然后将这个对象作为 handler 传入即可。
参考 2.2 中的NewSingleHostReverseProxy,只需要实现一个类似的、支持多 targets 的方法即可,具体实现见后面。
作为一个网关服务,在上面 2.3 的基础上,需要支持必要的负载均衡策略,比如:
随便 random 一个整数作为索引,然后取对应的地址即可,实现比较简单。
具体代码
使用curIndex进行累加计数,一旦超过 rss 数组的长度,则重置。
具体代码
轮询带权重,如果使用计数递减的方式,如果权重是5,1,1那么后端 rs 依次为a,a,a,a,a,b,c,a,a,a,a…,其中 a 后端会瞬间压力过大;参考 nginx 内部的加权轮询,或者应该称之为平滑加权轮询,思路是:
后端真实节点包含三个权重:
操作步骤:
具体代码
一致性 hash 算法,主要是用于分布式 cache 热点/命中问题;这里用于基于某 key 的 hash 值,路由到固定后端,但是只能是基本满足流量绑定,一旦后端目标节点故障,会自动平移到环上最近的那么个节点。
实现:
具体代码
每一种不同的负载均衡算法,只需要实现添加以及获取的接口即可。
然后使用工厂方法,根据传入的参数,决定使用哪种负载均衡策略。
具体代码
作为网关,中间件必不可少,这类包括请求响应的模式,一般称作洋葱模式,每一层都是中间件,一层层进去,然后一层层出来。
中间件的实现一般有两种,一种是使用数组,然后配合 index 计数;一种是链式调用。
具体代码
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流