python函数的灵活运用 常用的python函数

python如何定义和调用函数

1、函数定义

成都创新互联公司基于成都重庆香港及美国等地区分布式IDC机房数据中心构建的电信大带宽,联通大带宽,移动大带宽,多线BGP大带宽租用,是为众多客户提供专业服务器托管报价,主机托管价格性价比高,为金融证券行业棕树数据中心,ai人工智能服务器托管提供bgp线路100M独享,G口带宽及机柜租用的专业成都idc公司。

①使用def关键字定义函数

def 函数名(参数1.参数2.参数3...):

"""文档字符串,docstring,用来说明函数的作用"""

#函数体

return 表达式

注释的作用:说明函数是做什么的,函数有什么功能。

③遇到冒号要缩进,冒号后面所有的缩进的代码块构成了函数体,描述了函数是做什么的,即函数的功能是什么。Python函数的本质与数学中的函数的本质是一致的。

2、函数调用

①函数必须先定义,才能调用,否则会报错。

②无参数时函数的调用:函数名(),有参数时函数的调用:函数名(参数1.参数2.……)

③不要在定义函数的时候在函数体里面调用本身,否则会出不来,陷入循环调用。

④函数需要调用函数体才会被执行,单纯的只是定义函数是不会被执行的。

⑤Debug工具中Step into进入到调用的函数里,Step Into My Code进入到调用的模块里函数。

python中pos函数用法

Pos()功能在一个字符串中查找所包含的另一个字符串的起始位置。语法Pos ( string1, string2 {, start } )

参数string1:string类型,指定要从中查找子串string2的字符串string2:string类型,指定要在string1中查找的字符串start:long类型,可选项,指定从string1的第几个字符开始查找。缺省值为1返回值Long。函数执行成功时返回在start位置后string2在string1中第一次出现的起始位置。如果在string1中按指定要求未找到string2、或start的值超过了string1的长度,那么Pos()函数返回0。如果任何参数的值为NULL,Pos()函数返回NULL。用法Pos()函数在字符串查找时区分大小写,因此,"aa"不匹配"AA"。

拓展资料:

公式的运用

一、数字处理

1、取绝对值函数

公式:=ABS(数字)

2、取整函数

公式:=INT(数字)

3、四舍五入函数

公式:=ROUND(数字,小数位数)

二、判断公式

1、如果计算的结果值错误那么显示为空

公式:=IFERROR(数字/数字,)

说明:如果计算的结果错误则显示为空,否则正常显示。

2、IF语句的多条件判定及返回值

公式:IF(AND(单元格(逻辑运算符)数值,指定单元格=返回值1),返回值2,)

说明:所有条件同时成立时用AND,任一个成立用OR函数。

三、常用的统计公式

1、统计在两个表格中相同的内容

公式:B2=COUNTIF(数据源:位置,指定的,目标位置)

说明:如果返回值大于0说明在另一个表中存在,0则不存在。

如果,在此示例中所用到的公式为:B2=COUNTIF(Sheet15!A:A,A2)

2、统计不重复的总数据

公式:C2=SUMPRODUCT(1/COUNTIF(A2:A8,A2:A8))

说明:用COUNTIF函数统计出源数据中每人的出现次数,并用1除的方式把变成分数,最后再相加。

四、数据求和公式

1、隔列求和的应用

公式:H3=SUMIF($A$2:$G$2,H$2,A3:G3)或=SUMPRODUCT((MOD(COLUMN(B3:G3),2)=0)*B3:G3)

说明:如果在标题行中没有规则就可以用第2个公式

2、单条件应用之求和

公式:F2=SUMIF(A:A,C:C)

说明:这是SUMIF函数的最基础的用法

五、查找与引用公式

1、单条件查找

说明:VLOOKUP是excel中最常用的查找方式

六、字符串处理公式

1、多单元格字符串的合并

说明:Phonetic函数只能合并字符型数据,不能合并数值。

2、截取结果3位之外的部分

说明:LEN计算总长度,LEFT从左边截总长度-3个。

Python的5种高级用法

Lambda 函数

Python 函数一般使用 def a_function_name() 样式来定义,但是对于 lambda 函数来说,我们其实根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。

Map 函数

Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。

Filter 函数

filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。

Itertools 模块

Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。

使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。

Generator 函数

其实,Generator函数是一个类似于迭代器的函数,就是它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。

关于Python的5种高级用法,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。

可以让你快速用Python进行数据分析的10个小技巧

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas中数据框数据的Profiling过程

Profiling(分析器)是一个帮助我们理解数据的过程,而Pandas Profiling是一个Python包,它可以简单快速地对Pandas 的数据框数据进行 探索 性数据分析。

Pandas中df.describe()和df.info()函数可以实现EDA过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。 而Pandas中的Profiling功能简单通过一行代码就能显示大量信息,且在交互式HTML报告中也是如此。

对于给定的数据集,Pandas中的profiling包计算了以下统计信息:

由Pandas Profiling包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

安装

用pip安装或者用conda安装

pip install pandas-profiling

conda install -c anaconda pandas-profiling

用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能Python分析器的结果。

#importing the necessary packages

import pandas as pd

import pandas_profiling

df = pd.read_csv('titanic/train.csv')

pandas_profiling.ProfileReport(df)

一行代码就能实现在Jupyter Notebook中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

还可以使用以下代码将报告导出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df)

profile.to_file(outputfile="Titanic data profiling.html")

Pandas实现交互式作图

Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。

Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。

安装

pip install plotly

# Plotly is a pre-requisite before installing cufflinks

pip install cufflinks

用法

#importing Pandas

import pandas as pd

#importing plotly and cufflinks in offline mode

import cufflinks as cf

import plotly.offline

cf.go_offline()

cf.set_config_file(offline=False, world_readable=True)

是时候展示泰坦尼克号数据集的魔力了。

df.iplot()

df.iplot() vs df.plot()

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic可以看到所有的可用命令。

所有可用的Magic命令列表

Magic命令有两种:行magic命令(line magics),以单个%字符为前缀,在单行输入操作;单元magic命令(cell magics),以双%%字符为前缀,可以在多行输入操作。如果设置为1,则不用键入%即可调用Magic函数。

接下来看一些在常见数据分析任务中可能用到的命令:

% pastebin

%pastebin将代码上传到Pastebin并返回url。Pastebin是一个在线内容托管服务,可以存储纯文本,如源代码片段,然后通过url可以与其他人共享。事实上,Github gist也类似于pastebin,只是有版本控制。

在file.py文件中写一个包含以下内容的python脚本,并试着运行看看结果。

#file.py

def foo(x):

return x

在Jupyter Notebook中使用%pastebin生成一个pastebin url。

%matplotlib notebook

函数用于在Jupyter notebook中呈现静态matplotlib图。用notebook替换inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入matplotlib库之前调用。

%run

用%run函数在notebook中运行一个python脚本试试。

%run file.py

%%writefile

%% writefile是将单元格内容写入文件中。以下代码将脚本写入名为foo.py的文件并保存在当前目录中。

%%latex

%%latex函数将单元格内容以LaTeX形式呈现。此函数对于在单元格中编写数学公式和方程很有用。

查找并解决错误

交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。还可以检查程序中分配的变量值,并在此处执行操作。退出调试器单击q即可。

Printing也有小技巧

如果您想生成美观的数据结构,pprint是首选。它在打印字典数据或JSON数据时特别有用。接下来看一个使用print和pprint来显示输出的示例。

让你的笔记脱颖而出

我们可以在您的Jupyter notebook中使用警示框/注释框来突出显示重要内容或其他需要突出的内容。注释的颜色取决于指定的警报类型。只需在需要突出显示的单元格中添加以下任一代码或所有代码即可。

蓝色警示框:信息提示

p class="alert alert-block alert-info"

bTip:/b Use blue boxes (alert-info) for tips and notes.

If it’s a note, you don’t have to include the word “Note”.

/p

黄色警示框:警告

p class="alert alert-block alert-warning"

bExample:/b Yellow Boxes are generally used to include additional examples or mathematical formulas.

/p

绿色警示框:成功

p class="alert alert-block alert-success"

Use green box only when necessary like to display links to related content.

/p

红色警示框:高危

p class="alert alert-block alert-danger"

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

/p

打印单元格所有代码的输出结果

假如有一个Jupyter Notebook的单元格,其中包含以下代码行:

In [1]: 10+5

11+6

Out [1]: 17

单元格的正常属性是只打印最后一个输出,而对于其他输出,我们需要添加print()函数。然而通过在notebook顶部添加以下代码段可以一次打印所有输出。

添加代码后所有的输出结果就会一个接一个地打印出来。

In [1]: 10+5

11+6

12+7

Out [1]: 15

Out [1]: 17

Out [1]: 19

恢复原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

使用'i'选项运行python脚本

从命令行运行python脚本的典型方法是:python hello.py。但是,如果在运行相同的脚本时添加-i,例如python -i hello.py,就能提供更多优势。接下来看看结果如何。

首先,即使程序结束,python也不会退出解释器。因此,我们可以检查变量的值和程序中定义的函数的正确性。

其次,我们可以轻松地调用python调试器,因为我们仍然在解释器中:

import pdb

pdb.pm()

这能定位异常发生的位置,然后我们可以处理异常代码。

自动评论代码

Ctrl / Cmd + /自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。

删除容易恢复难

你有没有意外删除过Jupyter notebook中的单元格?如果答案是肯定的,那么可以掌握这个撤消删除操作的快捷方式。

如果您删除了单元格的内容,可以通过按CTRL / CMD + Z轻松恢复它。

如果需要恢复整个已删除的单元格,请按ESC + Z或EDIT撤消删除单元格。

结论

在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

python的range()函数有哪些用法?

range()函数的用法如下:

(1)range(stop)

创建一个(0,stop)之间的整数序列,步长为1。

(2)range(start,stop)

创建一个(start,stop)之间的整数序列,步长为1。

(3)range(start,stop,step)

创建一个[start,stop)之间的整数序列,步长为step。

参数介绍:

start:表示从返回序列的起始编号,默认情况下从0开始。

stop:表示生成最多但不包括此数字的数字。

step:指的是序列中每个数字之间的差异,默认值为1。

range()是Python的内置函数,在用户需要执行特定次数的操作时使用它,表示循环的意思。内置函数range()可用于以列表的形式生成数字序列。在range()函数中最常见用法是使用for和while循环迭代序列类型(List,string等)。

简单的来说,range()函数允许用户在给定范围内生成一系列数字。根据用户传递给函数的参数数量,用户可以决定该系列数字的开始和结束位置以及一个数字与下一个数字之间的差异有多大。


分享题目:python函数的灵活运用 常用的python函数
链接分享:http://csdahua.cn/article/hjcpoo.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流