python数组函数笔记,python定义数组函数

Python数据分析笔记#8.2.3 轴向连接

「目录」

扶余ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18980820575(备注:SSL证书合作)期待与您的合作!

数据规整:聚合、合并和重塑

Data Wrangling: Join, Combine, and Reshape

-------- 数据库风格的DataFrame合并

-------- 索引上的合并

-------- 轴向连接

轴向连接

另一种数据合并运算也被称作连接(concatenation)、绑定(binding)或堆叠(stacking)。Numpy的concatenation函数可以用Numpy数组来做:

假设有三个没有重叠索引的Series:

对这些对象调用concat可以将值和索引粘合在一起:

默认情况下,concat是在axis=0上工作的,最终产生一个新的Series。如果传入axis=1,则结果就会变成一个DataFrame(axis=1是列):

传入join='inner'可以得到他们的交集:

现在我们可以看到因为传入了join='inner',f索引和g索引那两行消失了。

我们还可以通过join_axes指定要使用的索引:

一个可能遇到的问题是,如果我们将s1,s1和s3拼接的时候,可能因为重复的索引导致无法区分结果。

解决的办法是我们可以在连接轴上创建一个层次化索引。使用keys参数即可达到这个目的:

如果沿着axis=1对Series进行合并,则keys就会成为DataFrame的列名:

同样的逻辑适用于DataFrame对象:

如果传入的不是列表而是一个字典,则字典的键就会被当作keys选项的值:

另外,我们还可以用names参数命名创建的轴级别:

本篇最后一个关于DataFrame的问题,若DataFrame的行索引不包含任何相关数据:

在这种情况下,我们可以传入ignore_index=True,结果就不会保留连接轴上的索引,而是产生一组新索引:

-END-

利用Python进行数据分析笔记:3.1数据结构

元组是一种固定长度、不可变的Python对象序列。创建元组最简单的办法是用逗号分隔序列值:

tuple 函数将任意序列或迭代器转换为元组:

中括号 [] 可以获取元组的元素, Python中序列索引从0开始 :

元组一旦创建,各个位置上的对象是无法被修改的,如果元组的一个对象是可变的,例如列表,你可以在它内部进行修改:

可以使用 + 号连接元组来生成更长的元组:

元组乘以整数,则会和列表一样,生成含有多份拷贝的元组:

将元组型的表达式赋值给变量,Python会对等号右边的值进行拆包:

拆包的一个常用场景就是遍历元组或列表组成的序列:

*rest 用于在函数调用时获取任意长度的位置参数列表:

count 用于计量某个数值在元组中出现的次数:

列表的长度可变,内容可以修改。可以使用 [] 或者 list 类型函数来定义列表:

append 方法将元素添加到列表尾部:

insert 方法可以将元素插入到指定列表位置:

( 插入位置范围在0到列表长度之间 )

pop 是 insert 的反操作,将特定位置的元素移除并返回:

remove 方法会定位第一个符合要求的值并移除它:

in 关键字可以检查一个值是否在列表中;

not in 表示不在:

+ 号可以连接两个列表:

extend 方法可以向该列表添加多个元素:

使用 extend 将元素添加到已经存在的列表是更好的方式,比 + 快。

sort 方法可以对列表进行排序:

key 可以传递一个用于生成排序值的函数,例如通过字符串的长度进行排序:

bisect.bisect 找到元素应当被插入的位置,返回位置信息

bisect.insort 将元素插入到已排序列表的相应位置保持序列排序

bisect 模块的函数并不会检查列表是否已经排序,因此对未排序列表使用bisect不会报错,但是可能导致不正确结果

切片符号可以对大多数序列类型选取子集,基本形式是 [start:stop]

起始位置start索引包含,结束位置stop索引不包含

切片还可以将序列赋值给变量:

start和stop可以省略,默认传入起始位置或结束位置,负索引可以从序列尾部进行索引:

步进值 step 可以在第二个冒号后面使用, 意思是每隔多少个数取一个值:

对列表或元组进行翻转时,一种很聪明的用法时向步进值传值-1:

dict(字典)可能是Python内建数据结构中最重要的,它更为常用的名字是 哈希表 或者 关联数组 。

字典是键值对集合,其中键和值都是Python对象。

{} 是创建字典的一种方式,字典中用逗号将键值对分隔:

你可以访问、插入或设置字典中的元素,:

in 检查字典是否含有一个键:

del 或 pop 方法删除值, pop 方法会在删除的同时返回被删的值,并删除键:

update 方法将两个字典合并:

update方法改变了字典元素位置,对于字典中已经存在的键,如果传给update方法的数据也含有相同的键,则它的值将会被覆盖。

字典的值可以是任何Python对象,但键必须是不可变的对象,比如标量类型(整数、浮点数、字符串)或元组(且元组内对象也必须是不可变对象)。

通过 hash 函数可以检查一个对象是否可以哈希化(即是否可以用作字典的键):

集合是一种无序且元素唯一的容器。

set 函数或者是用字面值集与大括号,创建集合:

union 方法或 | 二元操作符获得两个集合的联合即两个集合中不同元素的并集:

intersection 方法或 操作符获得交集即两个集合中同时包含的元素:

常用的集合方法列表:

和字典类似,集合的元素必须是不可变的。如果想要包含列表型的元素,必须先转换为元组:

python的数组让我很疑惑,在python中请教如何定义二维数组a[][3],在a[][1]存储第一个参数.....

直接用存在list里就可以了吧。

a=[]

...

a.appen(data)

二位数组在python其实也是list,比如s = ['python', 'java', ['asp', 'php'], 'scheme'],s[2]是一个list,你也可以把这个看成是二维数组吧。

对Python中数组的几种使用方法总结

对Python中数组的几种使用方法总结

今天小编就为大家分享一篇对Python中数组的几种使用方法总结,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

二维数组的初始化

matirx_done = [[0 for i in range(0, len(matirx))]for j in range(0, len(matirx[0]))]

就将其初始化为一个与matrix相同大小的元素全为 0 的矩阵

数组的多级排序

在数组 idea_collect = [[3, 1, 2], [3, 2, 1], [3, 2, 2], [3, 1, 1]] 中, 先按照第二项排列, 再按照第三项倒序排列 可写为:

idea_collect.sort(key=lambda x: (x[1], -x[2]))

其中, x[1] 代表第二项正序排列, -x[2] 代表第三项倒序排列

排列结果为 [[3, 1, 2], [3, 1, 1], [3, 2, 2], [3, 2, 1]]

在一个 class 中多个函数不传参使用同一个数组

如例所示:

class Partition:

def __init__(self):

self.num_complete = []

def partition(self, num, start, end):

self.num_compelete = num

def partition_core(self):

del self.num_compelete[0]

其中,self.num_compelete就是 class 中两个函数同时可以直接调用的数组, 不过最好先在def __init__中声明这个数组

以上这篇对Python中数组的几种使用方法总结就是小编分享给大家的全部内容了

python如何调用函数中的数组

python调用函数中的数组的方法:

在函数里面使用global定义一个全局变量,然后将数组赋值给这个变量,调用该函数,带有数组的的这个全局变量就可以直接使用了

示例如下:

执行结果如下:

更多Python知识,请关注:Python自学网!!

Python初级 sort以及数组和函数的用法

为什么不用参数?

pairs.sort(key=lo)

是将整个pairs迭代后每一次迭代的值都会传入lo.

为什么是按照输出结果的那种排序方式

lo函数返回的pair[1],也就是在迭代pairs是传入的(1,“one”)中的"one"

所以按照字母顺序排序的,在第一个字母相同时,按照第二个字符排序。

[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]


网页名称:python数组函数笔记,python定义数组函数
本文URL:http://csdahua.cn/article/hoshge.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流