java代码构建树 java构建树形结构

java中如何建立一个java树,请详解?

import java.awt.*;

成都网站设计、做网站,成都做网站公司-成都创新互联公司已向1000+企业提供了,网站设计,网站制作,网络营销等服务!设计与技术结合,多年网站推广经验,合理的价格为您打造企业品质网站。

import javax.swing.*;

class TreeDemo extends JFrame

{

public TreeDemo()

{

setSize(400,300);

setTitle("演示怎样使用JTree");

show();

JScrollPane jPanel=new JScrollPane();

getContentPane().add(jPanel);

JTree jtree=new JTree();

jPanel.getViewport().add(jtree,null);

validate();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

public class Example5_25

{

public static void main(String[] args)

{

TreeDemo frame=new TreeDemo();

}

}

其中JScrollPane是一个带滚动条的面板类。

将对象加入到带滚动条的面板类中,在将已建的数放入到其中。

就可建立一个系统默认的树结构。

用java怎么构造一个二叉树呢?

java构造二叉树,可以通过链表来构造,如下代码:

public class BinTree {

public final static int MAX=40;

BinTree []elements = new BinTree[MAX];//层次遍历时保存各个节点

int front;//层次遍历时队首

int rear;//层次遍历时队尾

private Object data; //数据元数

private BinTree left,right; //指向左,右孩子结点的链

public BinTree()

{

}

public BinTree(Object data)

{ //构造有值结点

this.data = data;

left = right = null;

}

public BinTree(Object data,BinTree left,BinTree right)

{ //构造有值结点

this.data = data;

this.left = left;

this.right = right;

}

public String toString()

{

return data.toString();

}

//前序遍历二叉树

public static void preOrder(BinTree parent){ 

if(parent == null)

return;

System.out.print(parent.data+" ");

preOrder(parent.left);

preOrder(parent.right);

}

//中序遍历二叉树

public void inOrder(BinTree parent){

if(parent == null)

return;

inOrder(parent.left);

System.out.print(parent.data+" ");

inOrder(parent.right);

}

//后序遍历二叉树

public void postOrder(BinTree parent){

if(parent == null)

return;

postOrder(parent.left);

postOrder(parent.right);

System.out.print(parent.data+" ");

}

// 层次遍历二叉树 

public void LayerOrder(BinTree parent)

elements[0]=parent;

front=0;rear=1;

while(frontrear)

{

try

{

if(elements[front].data!=null)

{

System.out.print(elements[front].data + " ");

if(elements[front].left!=null)

elements[rear++]=elements[front].left;

if(elements[front].right!=null)

elements[rear++]=elements[front].right;

front++;

}

}catch(Exception e){break;}

}

}

//返回树的叶节点个数

public int leaves()

{

if(this == null)

return 0;

if(left == nullright == null)

return 1;

return (left == null ? 0 : left.leaves())+(right == null ? 0 : right.leaves());

}

//结果返回树的高度

public int height()

{

int heightOfTree;

if(this == null)

return -1;

int leftHeight = (left == null ? 0 : left.height());

int rightHeight = (right == null ? 0 : right.height());

heightOfTree = leftHeightrightHeight?rightHeight:leftHeight;

return 1 + heightOfTree;

}

//如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层

public int level(Object object)

{

int levelInTree;

if(this == null)

return -1;

if(object == data)

return 1;//规定根节点为第一层

int leftLevel = (left == null?-1:left.level(object));

int rightLevel = (right == null?-1:right.level(object));

if(leftLevel0rightLevel0)

return -1;

levelInTree = leftLevelrightLevel?rightLevel:leftLevel;

return 1+levelInTree;

}

//将树中的每个节点的孩子对换位置

public void reflect()

{

if(this == null)

return;

if(left != null)

left.reflect();

if(right != null)

right.reflect();

BinTree temp = left;

left = right;

right = temp;

}

// 将树中的所有节点移走,并输出移走的节点

public void defoliate()

{

if(this == null)

return;

//若本节点是叶节点,则将其移走

if(left==nullright == null)

{

System.out.print(this + " ");

data = null;

return;

}

//移走左子树若其存在

if(left!=null){

left.defoliate();

left = null;

}

//移走本节点,放在中间表示中跟移走...

String innerNode += this + " ";

data = null;

//移走右子树若其存在

if(right!=null){

right.defoliate();

right = null;

}

}

/**

* @param args

*/

public static void main(String[] args) {

// TODO Auto-generated method stub

BinTree e = new BinTree("E");

BinTree g = new BinTree("G");

BinTree h = new BinTree("H");

BinTree i = new BinTree("I");

BinTree d = new BinTree("D",null,g);

BinTree f = new BinTree("F",h,i);

BinTree b = new BinTree("B",d,e);

BinTree c = new BinTree("C",f,null);

BinTree tree = new BinTree("A",b,c);

System.out.println("前序遍历二叉树结果: ");

tree.preOrder(tree);

System.out.println();

System.out.println("中序遍历二叉树结果: ");

tree.inOrder(tree);

System.out.println();

System.out.println("后序遍历二叉树结果: ");

tree.postOrder(tree);

System.out.println();

System.out.println("层次遍历二叉树结果: ");

tree.LayerOrder(tree);

System.out.println();

System.out.println("F所在的层次: "+tree.level("F"));

System.out.println("这棵二叉树的高度: "+tree.height());

System.out.println("--------------------------------------");

tree.reflect();

System.out.println("交换每个节点的孩子节点后......");

System.out.println("前序遍历二叉树结果: ");

tree.preOrder(tree);

System.out.println();

System.out.println("中序遍历二叉树结果: ");

tree.inOrder(tree);

System.out.println();

System.out.println("后序遍历二叉树结果: ");

tree.postOrder(tree);

System.out.println();

System.out.println("层次遍历二叉树结果: ");

tree.LayerOrder(tree);

System.out.println();

System.out.println("F所在的层次: "+tree.level("F"));

System.out.println("这棵二叉树的高度: "+tree.height());

}

java 构建二叉树

首先我想问为什么要用LinkedList 来建立二叉树呢? LinkedList 是线性表,

树是树形的, 似乎不太合适。

其实也可以用数组完成,而且效率更高.

关键是我觉得你这个输入本身就是一个二叉树啊,

String input = "ABCDE F G";

节点编号从0到8. 层次遍历的话:

对于节点i.

leftChild = input.charAt(2*i+1); //做子树

rightChild = input.charAt(2*i+2);//右子树

如果你要将带有节点信息的树存到LinkedList里面, 先建立一个节点类:

class Node{

public char cValue;

public Node leftChild;

public Node rightChild;

public Node(v){

this.cValue = v;

}

}

然后遍历input,建立各个节点对象.

LinkedList tree = new LinkedList();

for(int i=0;i input.length;i++)

LinkedList.add(new Node(input.charAt(i)));

然后为各个节点设置左右子树:

for(int i=0;iinput.length;i++){

((Node)tree.get(i)).leftChild = (Node)tree.get(2*i+1);

((Node)tree.get(i)).rightChild = (Node)tree.get(2*i+2);

}

这样LinkedList 就存储了整个二叉树. 而第0个元素就是树根,思路大体是这样吧。

java如何创建一颗二叉树

计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left

subtree)和“右子树”(right

subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的

i

-1次方个结点;深度为k的二叉树至多有2^(k)

-1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0

=

n2

+

1。

树是由一个或多个结点组成的有限集合,其中:

⒈必有一个特定的称为根(ROOT)的结点;

二叉树

⒉剩下的结点被分成n=0个互不相交的集合T1、T2、......Tn,而且,

这些集合的每一个又都是树。树T1、T2、......Tn被称作根的子树(Subtree)。

树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树

1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为2;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。

2.树的深度——组成该树各结点的最大层次。

3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;

4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。

树的表示

树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如右图可写成如下形式:

二叉树

(a(

b(d,e),

c(

f(

,g(h,i)

),

)))

用java怎么构造一个二叉树?

二叉树的相关操作,包括创建,中序、先序、后序(递归和非递归),其中重点的是java在先序创建二叉树和后序非递归遍历的的实现。

package com.algorithm.tree;

import java.io.File;

import java.io.FileNotFoundException;

import java.util.Queue;

import java.util.Scanner;

import java.util.Stack;

import java.util.concurrent.LinkedBlockingQueue;

public class Tree {

private Node root;

public Tree() {

}

public Tree(Node root) {

this.root = root;

}

//创建二叉树

public void buildTree() {

Scanner scn = null;

try {

scn = new Scanner(new File("input.txt"));

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

root = createTree(root,scn);

}

//先序遍历创建二叉树

private Node createTree(Node node,Scanner scn) {

String temp = scn.next();

if (temp.trim().equals("#")) {

return null;

} else {

node = new Node((T)temp);

node.setLeft(createTree(node.getLeft(), scn));

node.setRight(createTree(node.getRight(), scn));

return node;

}

}

//中序遍历(递归)

public void inOrderTraverse() {

inOrderTraverse(root);

}

public void inOrderTraverse(Node node) {

if (node != null) {

inOrderTraverse(node.getLeft());

System.out.println(node.getValue());

inOrderTraverse(node.getRight());

}

}

//中序遍历(非递归)

public void nrInOrderTraverse() {

StackNode stack = new StackNode();

Node node = root;

while (node != null || !stack.isEmpty()) {

while (node != null) {

stack.push(node);

node = node.getLeft();

}

node = stack.pop();

System.out.println(node.getValue());

node = node.getRight();

}

}

//先序遍历(递归)

public void preOrderTraverse() {

preOrderTraverse(root);

}

public void preOrderTraverse(Node node) {

if (node != null) {

System.out.println(node.getValue());

preOrderTraverse(node.getLeft());

preOrderTraverse(node.getRight());

}

}

//先序遍历(非递归)

public void nrPreOrderTraverse() {

StackNode stack = new StackNode();

Node node = root;

while (node != null || !stack.isEmpty()) {

while (node != null) {

System.out.println(node.getValue());

stack.push(node);

node = node.getLeft();

}

node = stack.pop();

node = node.getRight();

}

}

//后序遍历(递归)

public void postOrderTraverse() {

postOrderTraverse(root);

}

public void postOrderTraverse(Node node) {

if (node != null) {

postOrderTraverse(node.getLeft());

postOrderTraverse(node.getRight());

System.out.println(node.getValue());

}

}

//后续遍历(非递归)

public void nrPostOrderTraverse() {

StackNode stack = new StackNode();

Node node = root;

Node preNode = null;//表示最近一次访问的节点

while (node != null || !stack.isEmpty()) {

while (node != null) {

stack.push(node);

node = node.getLeft();

}

node = stack.peek();

if (node.getRight() == null || node.getRight() == preNode) {

System.out.println(node.getValue());

node = stack.pop();

preNode = node;

node = null;

} else {

node = node.getRight();

}

}

}

//按层次遍历

public void levelTraverse() {

levelTraverse(root);

}

public void levelTraverse(Node node) {

QueueNode queue = new LinkedBlockingQueueNode();

queue.add(node);

while (!queue.isEmpty()) {

Node temp = queue.poll();

if (temp != null) {

System.out.println(temp.getValue());

queue.add(temp.getLeft());

queue.add(temp.getRight());

}

}

}

}

//树的节点

class Node {

private Node left;

private Node right;

private T value;

public Node() {

}

public Node(Node left,Node right,T value) {

this.left = left;

this.right = right;

this.value = value;

}

public Node(T value) {

this(null,null,value);

}

public Node getLeft() {

return left;

}

public void setLeft(Node left) {

this.left = left;

}

public Node getRight() {

return right;

}

public void setRight(Node right) {

this.right = right;

}

public T getValue() {

return value;

}

public void setValue(T value) {

this.value = value;

}

}

测试代码:

package com.algorithm.tree;

public class TreeTest {

/**

* @param args

*/

public static void main(String[] args) {

Tree tree = new Tree();

tree.buildTree();

System.out.println("中序遍历");

tree.inOrderTraverse();

tree.nrInOrderTraverse();

System.out.println("后续遍历");

//tree.nrPostOrderTraverse();

tree.postOrderTraverse();

tree.nrPostOrderTraverse();

System.out.println("先序遍历");

tree.preOrderTraverse();

tree.nrPreOrderTraverse();

//

}

}

如何在java构造函数中创建一棵树

import java.util.Stack;//导入栈包

public class newtree {

private newtree lchild;// 声明数据成员

private newtree rchild;

private char data;

private newtree root;

public newtree(newtree l, newtree r, char data) {// 有参构造函数进行成员赋值

lchild = l;

rchild = r;

this.data = data;

}

public newtree() {// 无参构造函数创建树

newtree f = new newtree(null, null, 'f');

newtree g = new newtree(null, null, 'g');

newtree d = new newtree(null, null, 'd');

newtree e = new newtree(null, null, 'e');

newtree b = new newtree(d, e, 'b');

newtree c = new newtree(f, g, 'c');

newtree a = new newtree(b, c, 'a');

this.root=a;

}

public void visit(newtree p) {/* 输出数据 */

System.out.print(p.data);// 访问结点

}

@SuppressWarnings("unchecked")

public void InOrder() {/* 输入数据 */

newtree p=this.root;//你建了一棵树要把根节点赋值进去啊

Stack s = new Stack();

while (p != null || !s.isEmpty()) /* 处理数据:进行中序遍历 */

{

if (p != null) {

s.push(p);

p = p.lchild;

} else {

p = (newtree) s.pop();

p.visit(p);//this指的是当前的类对象

p = p.rchild;

}

}

}

public static void main(String[] args) {

// TODO Auto-generated method stub

newtree h = new newtree();// 声明变量,变量赋值

h.InOrder();

}

}

//根据你的代码改了一个

import java.util.Stack;//导入栈包

public class newtree {

public Tree createTree() {// 无参构造函数创建树

Tree f = new Tree(null, null, 'f');

Tree g = new Tree(null, null, 'g');

Tree d = new Tree(null, null, 'd');

Tree e = new Tree(null, null, 'e');

Tree b = new Tree(d, e, 'b');

Tree c = new Tree(f, g, 'c');

Tree a = new Tree(b, c, 'a');

return a;

}

public void InOrder(Tree p) {/* 输入数据 */

StackTree s = new StackTree();

while (p != null || !s.isEmpty()) { /* 处理数据:进行中序遍历 */

if (p != null) {

s.push(p);

p = p.lchild;

} else {

p = s.pop();

System.out.print(p.data);

p = p.rchild;

}

}

}

public void inOrder1(Tree p) {

if (p == null)

return;

inOrder1(p.lchild);

System.out.print(p.data);

inOrder1(p.rchild);

}

public static void main(String[] args) {

newtree h = new newtree();// 声明变量,变量赋值

h.InOrder(h.createTree());

System.out.println();

h.inOrder1(h.createTree());

}

}

class Tree {

Tree lchild;// 声明数据成员

Tree rchild;

char data;

Tree(Tree lchild, Tree rchild, char data) {

this.lchild = lchild;

this.rchild = rchild;

this.data = data;

}

}


本文名称:java代码构建树 java构建树形结构
URL地址:http://csdahua.cn/article/hpsdhd.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流