扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
一哈夫曼树以及文件压缩原理:
成都创新互联公司是专业的射阳网站建设公司,射阳接单;提供成都网站设计、成都网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行射阳网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
1.哈夫曼树 :
给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近(频率越高的结点离根越进
)。
以 下数组为例,构建哈夫曼树
int a[] = {0,1,2,3,4,5,6,7,8}
我们可以发现以下规律
1:9个数构成的哈夫曼树一共有17个结点,也就是可以n个数可以生产2*n-1个结点
2:数字越大的数离根节点越近,越小的数离根节点越近。
2.如何利用haffman编码实现文件压缩:
比如abc.txt文件中有以下字符:aaaabbbccde,
1.进行字符统计
aaaabbbccde a : 4次 b : 3次 c : 2次 d : 1次 e : 1次
2.用统计结果构建哈夫曼树
3.用哈夫曼树生成哈夫曼编码(从根结点开始,路径左边记为0,右边记为1):
a的编码:1 b的编码:01 c的编码:000 d的编码:0011 e的编码:0010
4.哈夫曼编码代替字符,进行压缩。
源文件内容为:aaaabbbccde
将源文件用对应的哈夫曼编码(haffman code)替换,则有:11110101 01000000 00110010 (总共3个字节)
由此可见,源文件一共有11个字符,占11字节的内存,但是经过用haffman code替换之后,只占3个字节,这样就能达到压缩的目的
二主要技术点:
1.哈夫曼树算法(哈夫曼压缩的基本算法)
2.哈希算法(字符统计时候会用到,也可以直接用HashMap统计)
3.位运算(涉及到将指定位,置0或置1)
4.java文件操作,以及缓冲操作。
5.存储模式(大端存储,小端存储,能看懂文件16进制的形式)
7.设置压缩密码,解压输入密码解压(小编自己加的内容)
三实现过程:
以上述aaaabbbccde为例
1.字符统计:
public class FreqHuf { public static int BUFFER_SIZE = 1 << 18; int freq[] = new int[256]; File file; int count; Listlist; FreqHuf(String pathname) throws Exception { list = new ArrayList<>(); this.file = new File(pathname); if(!file.exists()){ throw new Exception("文件不存在"); } System.out.println("进行字符统计中"); CensusChar(); System.out.println("字符统计完毕"); } public void CensusChar() throws IOException{ int intchar; FileInputStream fis = new FileInputStream(file); System.out.println("统计中"); //这种统计处理方案,速度极慢,不建议使用,以下采用缓存读数据。 // while((intchar = fis.read()) != -1){ // freq[intchar]++; // } //这里采用缓存机制,一次读1 << 18个字节,大大提高效率。 byte[] bytes = new byte[BUFFER_SIZE]; while((intchar = fis.read(bytes))!= -1){ for(int i = 0; i < intchar;i++){ int temp = bytes[i]& 0xff; freq[temp]++; } } fis.close(); for(int i = 0; i < 256; i++){ if(freq[i] != 0){ this.count++; } } int index = 0; for(int i = 0; i < 256; i++){ if(freq[i] != 0){ HuffmanFreq huffman = new HuffmanFreq(); huffman.character = (char)i; huffman.freq = freq[i]; list.add(index, huffman); } } } }
//统计每个字符和其频率的类 public class HuffmanFreq { char character; int freq; HuffmanFreq() { } HuffmanFreq(int character,int freq) { this.character = (char)character; this.freq = freq; } char getCharacter() { return character; } void setCharacter(int character) { this.character = (char)character; } int getFreq() { return freq; } void setFreq(int freq) { this.freq = freq; } byte[] infoToByte(){ byte[] bt = new byte[6]; byte[] b1 = ByteAnd8Types.charToByte(character); for(int i= 0; i < b1.length;i++){ bt[i] = b1[i]; } byte[] b2 = ByteAnd8Types.intToBytes2(freq); int index = 2; for(int i= 0; i < b2.length;i++){ bt[index++] = b2[i]; } return bt; } @Override public String toString() { return "Huffman [character=" + character + ", freq=" + freq + "]"; } }
2.用统计结果构建哈夫曼树:
//treeSize为总节点数 private void creatTree(int treeSize){ int temp; treeList = new ArrayList(); for(int i = 0; i < treeSize; i++){ HuffTreeNode node = new HuffTreeNode(); treeList.add(i, node); } for(int i = 0; i < charCount; i++){ HuffTreeNode node = treeList.get(i); node.freq.freq = charList.get(i).getFreq(); node.freq.character = charList.get(i).getCharacter(); node.left = -1; node.right = -1; node.use = 0; } for(int i = charCount; i < treeSize; i++){ int index = i; HuffTreeNode node = treeList.get(i); node.use = 0; node.freq.character = '#'; node.right = searchmin(index); node.left = searchmin(index); node.freq.freq = treeList.get(node.right).freq.freq + treeList.get(node.left).freq.freq; temp = searchmin(++index); if(temp == -1){ break; } treeList.get(temp).use = 0; } } private int searchmin(int count){ int minindex = -1; for(int i = 0; i < count; i++){ if(treeList.get(i).use == 0){ minindex = i; break; } } if(minindex == -1){ return -1; } for(int i = 0; i < count; i++){ if((treeList.get(i).freq.freq <= treeList.get(minindex).freq.freq) && treeList.get(i).use == 0){ minindex = i; } } treeList.get(minindex).use = 1; return minindex; }
3.用哈夫曼树生成哈夫曼编码(从根结点开始,路径左边记为0,右边记为1):
private void bulidhuftreecode(int root, String str){ if(treeList.get(root).getLeft() != -1 && treeList.get(root).getRight() != -1){ bulidhuftreecode(treeList.get(root).getLeft(), str+"0"); bulidhuftreecode(treeList.get(root).getRight(), str + "1"); } else{ treeList.get(root).code = str; } }
4.哈夫曼编码代替字符,进行压缩,压缩前首先要将文件头(文件标志,字符数量,最后一个字节有效位,密码)字符和其频率的那张表格写入文件,以便于解压缩
public void creatCodeFile(String path) throws Exception{ byte value = 0; int index = 0; int arr[] = new int[256]; int intchar; for(int i = 0; i < charCount; i++){ arr[treeList.get(i).freq.character] = i; } File file = new File(path); if(!file.exists()){ if(!file.createNewFile()){ throw new Exception("创建文件失败"); } } int count = charList.size(); HuffmanHead head = new HuffmanHead(count, howlongchar(count), password); //将文件头信息写入文件 this.write = new RandomAccessFile(file, "rw"); write.write(head.InfoToByte()); //将字符及其频率的表写入文件 for(HuffmanFreq freq : charList){ byte[] bt = freq.infoToByte(); write.write(bt); } //将字符用哈夫曼编码进行压缩,这里读写都是采用缓存机制 byte[] readBuffer = new byte[BUFFER_SIZE]; while((intchar = read.read(readBuffer))!= -1){ ProgressBar.SetCurrent(read.getFilePointer()); for(int i = 0; i < intchar;i++){ int temp = readBuffer[i]& 0xff; String code = treeList.get(arr[temp]).code; char[] chars = code.toCharArray(); for(int j = 0; j < chars.length; j++){ if(chars[j] == '0'){ value = CLR_BYTE(value, index); } if(chars[j] == '1'){ value = SET_BYTE(value, index); } if(++index >= 8){ index = 0; writeInBuffer(value); } } } } //此方法速度较慢 // while((intchar = is.read()) != -1){ // String code = treeList.get(arr[intchar]).code; // char[] chars = code.toCharArray(); // // for(int i = 0; i < chars.length; i++){ // if(chars[i] == '0'){ // value = CLR_BYTE(value, index); // } // if(chars[i] == '1'){ // value = SET_BYTE(value, index); // } // if(++index >= 8){ // index = 0; // oos.write(value); // } // } // } if(index != 0){ writeInBuffer(value); } byte[] Data = Arrays.copyOfRange(writeBuffer, 0, writeBufferSize); write.write(Data); write.close(); read.close(); } //指定位,置1 byte SET_BYTE(byte value, int index){ return (value) |= (1 << ((index) ^ 7)); } //指定位,置0 byte CLR_BYTE(byte value, int index){ return (value) &= (~(1 << ((index) ^ 7))); } //判断指定位是否为0,0为false,1为true boolean GET_BYTE(byte value, int index){ return ((value) & (1 << ((index) ^ 7))) != 0; }
如果一个字节一个字节往文件里写,速度会极慢,为了提高效率,写也采用缓存,先写到缓存区,缓存区满了后写入文件,
private void writeInBuffer(byte value) throws Exception { if(writeBufferSize < BUFFER_SIZE){ writeBuffer[writeBufferSize] = value; if(++writeBufferSize >= BUFFER_SIZE){ write.write(writeBuffer); writeBufferSize = 0; } } else{ throw new Exception("写入文件出错"); } }
到这里压缩就完成了,以下为解压缩方法
1.从写入文件中的字符统计的表读出放入list里
public void init() throws Exception{ char isHUf = read.readChar(); //验证文件头信息 if(isHUf != '哈'){ throw new Exception("该文件不是HUFFMAN压缩文件"); } this.charCount = read.readChar(); this.treeSize = 2*charCount -1; this.lastIndex = read.readChar(); int password = read.readInt(); if(password != this.password.hashCode()){ System.out.println("密码错误"); } else{ System.out.println("密码正确,正在解压"); } //从文件中将字符统计的表读出 byte[] buffer = new byte[charCount * 6]; read.seek(10); read.read(buffer, 0, charCount * 6); ProgressBar.SetCurrent(read.getFilePointer()); for(int i = 0; i < buffer.length; i+=6){ byte[] buff = Arrays.copyOfRange(buffer, i, i+2); ByteBuffer bb = ByteBuffer.allocate (buff.length); bb.put (buff); bb.flip (); CharBuffer cb = cs.decode (bb); byte[] buff1 = Arrays.copyOfRange(buffer, i+2, i+6); int size = ByteAnd8Types.bytesToInt2(buff1, 0); HuffmanFreq freq = new HuffmanFreq(cb.array()[0], size); charList.add(freq); } }
2.用统计结果构建哈夫曼树(和以上代码一样)
3.用哈夫曼树生成哈夫曼编码(从根结点开始,路径左边记为0,右边记为1)(和以上代码一样)
4.遍历文件每个字节,根据哈夫曼编码找到对应的字符,将字符写入新文件
public void creatsourcefile(String pathname) throws Exception{ int root = treeList.size() - 1; int fininsh = 1; long len; File file = new File(pathname); if(!file.exists()){ if(!file.createNewFile()){ throw new Exception("创建文件失败"); } } write = new RandomAccessFile(file, "rw"); int intchar; byte[] bytes = new byte[1<<18]; int index = 0; while((intchar = read.read(bytes))!= -1){ len = read.getFilePointer(); ProgressBar.SetCurrent(len); for(int i = 0; i < intchar;i++){ for(;index < 8 && fininsh != 0;){ if(GET_BYTE(bytes[i], index)){ root = treeList.get(root).right; } else{ root = treeList.get(root).left; } if(treeList.get(root).right== -1 && treeList.get(root).left == -1){ byte temp = (byte)treeList.get(root).freq.character; writeInBuffer(temp); root = treeList.size() - 1; } index++; if(len == this.goalfilelenth && i == intchar-1){ if(index >= this.lastIndex){ fininsh = 0; } } } index = 0; } } byte[] Data = Arrays.copyOfRange(writeBuffer, 0, writeBufferSize); write.write(Data); write.close(); write.close(); read.close(); }
四运行展示:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持创新互联。
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流