扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
===============================================================================
create table psn
(
id int,
name string,
likes array,
address map
)
partitioned by (age int)
row format delimited
fields terminated by '\t'
collection items terminated by '-'
map keys terminated by ':'
lines terminated by '\n';
====================================================================================
hive> load data local inpath '/root/a.txt' overwrite into table psn partition(age=10);
Loading data to table default.psn partition (age=10)
OK
Time taken: 3.817 seconds
=================================================================================
hive> select * from psn;
OK
1 zhang3 ["sing","tennis","running"] {"beijing":"daxing"} 10
2 li4 ["sing","pingpong","swim"] {"shanghai":"baoshan"} 10
3 wang5 ["read","joke","football"] {"guangzou":"baiyun"} 10
==============================================================================
需求:
一次性统计每种爱好出现了多少次,每个城市出现了多少次,每个区出现多少次。
分析:
这个需求有点像hive实现wordcount案例,或者说它就是两个wc案例的聚合,只不过现在这个不用split。
在wc案例中,我们使用explode完美地解决了一列记录wc操作。
但是在hive中的udtf函数(split/explode)中,select子句只能单独出现一个udtf函数,且udtf函数不能与其它字段和函数一并使用。
#####只能select explode(..) from emp;
#####不能select explode(..), explode(..) from emp;
#####不能select id,explode(..) from emp;
这就会造成对于一些复杂逻辑就会出现无法处理的问题,就比如以上这个两列记录的wc操作。
这时候就需要用到lateral view了,它可以将udtf函数产生的多行结果组织成一张虚拟表。
===================================================================================
hive> select count(distinct c1),count(distinct c2),count(distinct c3)from psn
>lateral view explode(likes)t1 as c1
>lateral view explode(address)t2 as c2,c3;
#####t1和t2为经过udtf函数产生的虚拟表的表名,c1/c2/c3为字段别名
#####数组经过explode会产生一列数据,map集合产生两列。
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2019-04-24 22:59:16,471 Stage-1 map = 0%, reduce = 0%
2019-04-24 22:59:25,681 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.76 sec
2019-04-24 22:59:36,268 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 4.15 sec
MapReduce Total cumulative CPU time: 4 seconds 150 msec
Ended Job = job_1556088929464_0004
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.15 sec HDFS Read: 14429 HDFS Write: 105 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 150 msec
OK
8 3 3
Time taken: 35.986 seconds, Fetched: 1 row(s)
=============================================================================
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流