Flink中Transform怎么用

小编给大家分享一下Flink中Transform怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联是一家专注于网站制作、成都网站制作与策划设计,山阳网站建设哪家好?创新互联做网站,专注于网站建设十多年,网设计领域的专业建站公司;建站业务涵盖:山阳等地区。山阳做网站价格咨询:13518219792

分组聚合
  String path = "E:\\GIT\\flink-learn\\flink-learn\\telemetering.txt";
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        TupleTypeInfo> typeInfo = new TupleTypeInfo<>(Types.STRING, Types.DOUBLE, Types.LONG);

        TupleCsvInputFormat> tupleCsvInputFormat =
                new TupleCsvInputFormat<>(new Path(path), typeInfo);

        DataStreamSource> dataStreamSource = env.createInput(tupleCsvInputFormat, typeInfo);
        //或   DataStreamSource> dataStreamSource = env.readFile(tupleCsvInputFormat, path);

        SingleOutputStreamOperator> operator = dataStreamSource
                .filter(Objects::nonNull)
//                .map()
//                .flatMap()
//                .keyBy(0)
                .keyBy(tuple -> tuple.f0)
                .minBy(1);
//                .min()
//                .max(1);
//                .maxBy(1, false);
//                .sum(1);
//                .reduce();
//                .process();
        operator.print().setParallelism(1);
        env.execute();
分流/合流
String path = "E:\\GIT\\flink-learn\\flink-learn\\telemetering.txt";
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        PojoTypeInfo typeInfo = (PojoTypeInfo) Types.POJO(TelemeterDTO.class);
        PojoCsvInputFormat inputFormat = new PojoCsvInputFormat<>(new Path(path), typeInfo, new String[]{"code", "value", "timestamp"});
        DataStreamSource dataStreamSource = env.createInput(inputFormat, typeInfo);

        //分流
        SplitStream splitStream = dataStreamSource
                .split(item -> {
                    if (item.getValue() > 100) {
                        return Collections.singletonList("high");
                    }
                    return Collections.singletonList("low");
                });

        DataStream highStream = splitStream.select("high");
        DataStream lowStream = splitStream.select("low");

        //合流
        ConnectedStreams connectedStreams = lowStream.connect(highStream);
//        DataStream unionDataStream = lowStream.union(highStream); //需要类型一致

        SingleOutputStreamOperator> operator = connectedStreams
                .map(new CoMapFunction>() {
                    @Override
                    public Tuple3 map1(TelemeterDTO value) {
                        return Tuple3.of(value.getCode(), value.getValue(), value.getTimestamp());
                    }

                    @Override
                    public Tuple3 map2(TelemeterDTO value) {
                        return Tuple3.of(value.getCode(), value.getValue(), value.getTimestamp());
                    }
                });

        operator.print();
        env.execute();
UDF函数,提供底层支持
  • MapFunction

  • FilterFunction

  • ReduceFunction

  • ProcessFunction

  • SourceFunction

  • SinkFunction

富函数

富函数 包含了生命周期,及上下文相关信息,如

  • open() 可以在算子创建之初建立数据库连接

  • close() 在在算子生命结束之前关闭资源

以上是“Flink中Transform怎么用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


当前题目:Flink中Transform怎么用
文章出自:http://csdahua.cn/article/ieihog.html
扫二维码与项目经理沟通

我们在微信上24小时期待你的声音

解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流