扫二维码与项目经理沟通
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流
Python中怎么操作MongoDB文档数据库,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
创新互联公司是网站建设专家,致力于互联网品牌建设与网络营销,专业领域包括成都网站建设、成都网站制作、电商网站制作开发、微信小程序定制开发、微信营销、系统平台开发,与其他网站设计及系统开发公司不同,我们的整合解决方案结合了恒基网络品牌建设经验和互联网整合营销的理念,并将策略和执行紧密结合,且不断评估并优化我们的方案,为客户提供全方位的互联网品牌整合方案!安装pymongo: pip install pymongo
PyMongo是驱动程序,使python程序能够使用Mongodb数据库,使用python编写而成;
insert_one()
:插入一条记录;
insert()
:插入多条记录;
find_one()
:查询一条记录,不带任何参数返回第一条记录,带参数则按条件查找返回;
find()
:查询多条记录,不带参数返回所有记录,带参数按条件查找返回;
count()
:查看记录总数;
create_index()
:创建索引;
update_one()
:更新匹配到的第一条数据;
update()
:更新匹配到的所有数据;
remove()
:删除记录,不带参表示删除全部记录,带参则表示按条件删除;
delete_one()
:删除单条记录;
delete_many()
:删除多条记录;
查看数据库
from pymongo import MongoClient connect = MongoClient(host='localhost', port=27017, username="root", password="123456") connect = MongoClient('mongodb://localhost:27017/', username="root", password="123456") print(connect.list_database_names())
获取数据库实例
test_db = connect['test']
获取collection实例
collection = test_db['students']
插入一行document, 查询一行document,取出一行document的值
from pymongo import MongoClient from datetime import datetime connect = MongoClient(host='localhost', port=27017, username="root", password="123456",) # 获取db test_db = connect['test'] # 获取collection collection = test_db['students'] # 构建document document = {"author": "Mike", "text": "My first blog post!", "tags": ["mongodb", "python", "pymongo"], "date": datetime.now()} # 插入document one_insert = collection.insert_one(document=document) print(one_insert.inserted_id) # 通过条件过滤出一条document one_result = collection.find_one({"author": "Mike"}) # 解析document字段 print(one_result, type(one_result)) print(one_result['_id']) print(one_result['author']) 注意:如果需要通过id查询一行document,需要将id包装为ObjectId类的实例对象 from bson.objectid import ObjectId collection.find_one({'_id': ObjectId('5c2b18dedea5818bbd73b94c')})
插入多行documents, 查询多行document, 查看collections有多少行document
from pymongo import MongoClient from datetime import datetime connect = MongoClient(host='localhost', port=27017, username="root", password="123456",) # 获取db test_db = connect['test'] # 获取collection collection = test_db['students'] documents = [{"author": "Mike","text": "Another post!","tags": ["bulk", "insert"], "date": datetime(2009, 11, 12, 11, 14)}, {"author": "Eliot", "title": "MongoDB is fun", "text": "and pretty easy too!", "date": datetime(2009, 11, 10, 10, 45)}] collection.insert_many(documents=documents) # 通过条件过滤出多条document documents = collection.find({"author": "Mike"}) # 解析document字段 print(documents, type(documents)) print('*'*300) for document in documents: print(document) print('*'*300) result = collection.count_documents({'author': 'Mike'}) print(result)
范围比较查询
from pymongo import MongoClient from datetime import datetime connect = MongoClient(host='localhost', port=27017, username="root", password="123456",) # 获取db test_db = connect['test'] # 获取collection collection = test_db['students'] # 通过条件过滤时间小于datetime(2019, 1,1,15,40,3) 的document documents = collection.find({"date": {"$lt": datetime(2019, 1,1,15,40,3)}}).sort('date') # 解析document字段 print(documents, type(documents)) print('*'*300) for document in documents: print(document)
创建索引
from pymongo import MongoClient import pymongo from datetime import datetime connect = MongoClient(host='localhost', port=27017, username="root", password="123456",) # 获取db test_db = connect['test'] # 获取collection collection = test_db['students'] # 创建字段索引 collection.create_index(keys=[("name", pymongo.DESCENDING)], unique=True) # 查询索引 result = sorted(list(collection.index_information())) print(result)
document修改
from pymongo import MongoClient connect = MongoClient(host='localhost', port=27017, username="root", password="123456",) # 获取db test_db = connect['test'] # 获取collection collection = test_db['students'] result = collection.update({'name': 'robby'}, {'$set': {"name": "Petter"}}) print(result) 注意:还有update_many()方法
document删除
from pymongo import MongoClient connect = MongoClient(host='localhost', port=27017, username="root", password="123456",) # 获取db test_db = connect['test'] # 获取collection collection = test_db['students'] result = collection.delete_one({'name': 'Petter'}) print(result.deleted_count) 注意:还有delete_many()方法
MongoDB ODM 与 Django ORM使用方法类似;
MongoEngine是一个对象文档映射器,用Python编写,用于处理MongoDB;
MongoEngine提供的抽象是基于类的,创建的所有模型都是类;
# 安装mongoengine pip install mongoengine
mongoengine使用的字段类型
BinaryField BooleanField ComplexDateTimeField DateTimeField DecimalField DictField DynamicField EmailField EmbeddedDocumentField EmbeddedDocumentListField FileField FloatField GenericEmbeddedDocumentField GenericReferenceField GenericLazyReferenceField GeoPointField ImageField IntField ListField:可以将自定义的文档类型嵌套 MapField ObjectIdField ReferenceField LazyReferenceField SequenceField SortedListField StringField URLField UUIDField PointField LineStringField PolygonField MultiPointField MultiLineStringField MultiPolygonField
from mongoengine import connect conn = connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin') print(conn)
connect(db = None,alias ='default',** kwargs );
db
:要使用的数据库的名称,以便与connect兼容;
host
:要连接的mongod实例的主机名;
port
:运行mongod实例的端口;
username
:用于进行身份验证的用户名;
password
:用于进行身份验证的密码;
authentication_source
:要进行身份验证的数据库;
构建文档模型,插入数据
from mongoengine import connect, \ Document, \ StringField,\ IntField, \ FloatField,\ ListField, \ EmbeddedDocumentField,\ DateTimeField, \ EmbeddedDocument from datetime import datetime # 嵌套文档 class Score(EmbeddedDocument): name = StringField(max_length=50, required=True) value = FloatField(required=True) class Students(Document): choice = (('F', 'female'), ('M', 'male'),) name = StringField(max_length=100, required=True, unique=True) age = IntField(required=True) hobby = StringField(max_length=100, required=True, ) gender = StringField(choices=choice, required=True) # 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段 score = ListField(EmbeddedDocumentField(Score)) time = DateTimeField(default=datetime.now()) if __name__ == '__main__': connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin') math_score = Score(name='math', value=94) chinese_score = Score(name='chinese', value=100) python_score = Score(name='python', value=99) for i in range(10): students = Students(name='robby{}'.format(i), age=int('{}'.format(i)), hobby='read', gender='M', score=[math_score, chinese_score, python_score]) students.save()
查询数据
from mongoengine import connect, \ Document, \ StringField,\ IntField, \ FloatField,\ ListField, \ EmbeddedDocumentField,\ DateTimeField, \ EmbeddedDocument from datetime import datetime # 嵌套文档 class Score(EmbeddedDocument): name = StringField(max_length=50, required=True) value = FloatField(required=True) class Students(Document): choice = (('F', 'female'), ('M', 'male'),) name = StringField(max_length=100, required=True, unique=True) age = IntField(required=True) hobby = StringField(max_length=100, required=True, ) gender = StringField(choices=choice, required=True) # 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段 score = ListField(EmbeddedDocumentField(Score)) time = DateTimeField(default=datetime.now()) if __name__ == '__main__': connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin') first_document = Students.objects.first() all_document = Students.objects.all() # 如果只有一条,也可以使用get specific_document = Students.objects.filter(name='robby3') print(first_document.name, first_document.age, first_document.time) for document in all_document: print(document.name) for document in specific_document: print(document.name, document.age)
修改、更新、删除数据
from mongoengine import connect, \ Document, \ StringField,\ IntField, \ FloatField,\ ListField, \ EmbeddedDocumentField,\ DateTimeField, \ EmbeddedDocument from datetime import datetime # 嵌套文档 class Score(EmbeddedDocument): name = StringField(max_length=50, required=True) value = FloatField(required=True) class Students(Document): choice = (('F', 'female'), ('M', 'male'),) name = StringField(max_length=100, required=True, unique=True) age = IntField(required=True) hobby = StringField(max_length=100, required=True, ) gender = StringField(choices=choice, required=True) # 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段 score = ListField(EmbeddedDocumentField(Score)) time = DateTimeField(default=datetime.now()) if __name__ == '__main__': connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin') specific_document = Students.objects.filter(name='robby3') specific_document.update(set__age=100) specific_document.update_one(set__age=100) for document in specific_document: document.name = 'ROBBY100' document.save() for document in specific_document: document.delete()
all()
:返回所有文档;
all_fields()
:包括所有字段;
as_pymongo()
:返回的不是Document实例 而是pymongo值;
average()
:平均值超过指定字段的值;
batch_size()
:限制单个批次中返回的文档数量;
clone()
:创建当前查询集的副本;
comment()
:在查询中添加注释;
count()
:计算查询中的选定元素;
create()
:创建新对象,返回保存的对象实例;
delete()
:删除查询匹配的文档;
distinct()
:返回给定字段的不同值列表;
count()
:列表中嵌入文档的数量,列表的长度;
create()
:创建新的嵌入式文档并将其保存到数据库中;
delete()
:从数据库中删除嵌入的文档;
exclude(** kwargs )
:通过使用给定的关键字参数排除嵌入的文档来过滤列表;
first()
:返回列表中的第一个嵌入文档;
get()
:检索由给定关键字参数确定的嵌入文档;
save()
:保存祖先文档;
update()
:使用给定的替换值更新嵌入的文档;
看完上述内容,你们掌握Python中怎么操作MongoDB文档数据库的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联-成都网站建设公司行业资讯频道,感谢各位的阅读!
我们在微信上24小时期待你的声音
解答本文疑问/技术咨询/运营咨询/技术建议/互联网交流